K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2020

xét tứ giác ANMP có

AN song song với MP(AB song song với MP)

MN song song với AP(MN song song với AC)

=>ANMP là hình bình hành(dấu hiệu nhận biết)

a: Xét ΔBAC có BN/BA=BM/BC

nên NM//AC và NM=AC/2

=>NM//AP và NM=AP

=>ANMP là hình bình hành

mà góc NAP=90 độ

nên ANMP là hình chữ nhật

b: Xét tứ giác CMNP có

NM//CP

NM=CP

Do đó: CMNP là hình bình hành

=>CN cắt MP tại trung điểm của mỗi đường

=>E là trung điểm của NC

24 tháng 8 2023

A B C M N P E F H K

a/ 

\(MP\perp AC;NA\perp AC\) => MP//NA

\(MN\perp AB;PA\perp AB\) => MN//PA

=> ANMP là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có \(\widehat{A}=90^o\)

=> ANMP là hình chữ nhật (hbh có 1 góc vuông là HCN)

b/

MN//PA (cmt) => MN//AC

MB=MC (gt)

=> NA=NB (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

C/m tương tự cũng có PA=PC

Ta có

MP//NA (cmt) => MP//NB

NA=NB; PA=PC => NP là đường trung bình của tg ABC

=> NP//BC => NP//MB

=> BMPN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

c/

Xét HCN ANMP có

FM=FA (trong HCN 2 đường chéo cắt nhau tại trung điểm mỗi đường)

EM=EB (gt)

=> EF là đường trung bình của tg MAB => EF//AB

=> ABEF là hình thang

Ta có

MB=MC => AM=MB=MC=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Ta có

FM=FA=AM/2

EB=EM=BM/2

=> FA=EB

=> ABEF là hình thang cân

d/

 

 

22 tháng 8 2017

Kéo dài MN cắt AB tại D => CA; MD là đường cao tg CBD => K là trực tâm=> BK _|_CD (1*) 

Mà AH//MD \(\Rightarrow\) \(\frac{BA}{BD}=\frac{BH}{BM}\Rightarrow\frac{2BN}{BD}=\frac{BH}{BM}\Rightarrow\frac{BN}{BD}=\frac{BH}{2BM}=\frac{BH}{BC}\Rightarrow\)NH//CD (2*) 

Từ (1*,2*) => BK _|_HN\(\Rightarrowđcpm\)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)