Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính độ dài cạnh BC của tam giác ABC, chúng ta có thể sử dụng định lý Pythagoras và các tính chất của tam giác cân.
Vì tam giác ABC cân tại A, ta có AH = HC. Vì vậy, ta có HA = HC = 32 cm.
Ta biết HD = 4 cm. Vì tam giác ABC cân, ta có AD là đường cao từ A xuống BC. Vì vậy, ta cũng có HD = AD.
Áp dụng định lý Pythagoras vào tam giác AHD, ta có:
AH^2 = AD^2 + HD^2 32^2 = AD^2 + 4^2 1024 = AD^2 + 16 AD^2 = 1024 - 16 AD^2 = 1008 AD = √1008
Vậy, độ dài cạnh BC của tam giác ABC là 2 * AD = 2 * √1008 = 2 * 4√63 = 8√63 cm.
Tam giác ABC cân tại A nên B D = D C = B C 2 = 24 2 = 12 ( c m )
Theo định lý Py-ta-go, ta có A D 2 = A C 2 - D C 2 = 20 2 - 12 2 = 16 2
Nên AD = 16cm
Xét ΔCDH và ΔADB có:
C D H ^ = A D B ^ = 90 ∘
C 1 = A 1 (cùng phụ với B)
Do đó ΔCDH ~ ΔADB (g.g)
Nên H D B D = H C A B = C D A D , tức là H D 12 = H C 20 = 12 16 = 3 4
Suy ra HD = 9cm.
Đáp án: C
a: Xét ΔABD vuông tại D và ΔCBE vuông tại E có
góc B chung
=>ΔABD đồng dạng với ΔCBE
b:
ΔABC cân tại A có AD là đường cao
nên D là trung điểm của BC
=>DB=DC=12/2=6cm
=>AD=8cm
ΔABD đồng dạng với ΔCBE
=>BE/BD=AB/CB=AD/CE
=>BE/6=10/12=8/CE
=>BE=5cm; CE=12*8/10=9,6cm
c: Xét ΔCDH vuông tại D và ΔCEB vuông tại E có
góc HCD chung
=>ΔCDH đồng dạng với ΔCEB
=>HD/EB=CD/CE
=>HD/5=6/9,6=5/8
=>HD=25/8cm
áp dụng tính chất đường phân giác ta có : AD/DC=AB/BC hay AD/AB=DC/BC
theo tính chất của dãy tỉ số bằng nhau, ta co: AD/AB=DC/BC =( AD+DC)/ (AB+BC)=6/10=3/5
VẬY AD = 3/5 x AB=3/5 x 6 =18/5 cm
a: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
góc DBH chung
Do đó: ΔBDH đồng dạng với ΔBEC
Xét ΔBDH vuông tại D và ΔAEH vuông tại E có
góc BHD=góc AHE
Do đó: ΔBDH đồng dạng với ΔAEH
b: DC=BC/2=60(cm)
=>AD=80cm
Xét ΔBEC vuông tại E và ΔADC vuông tại D có
góc C chung
Do đó: ΔBEC đồng dạng với ΔADC
=>BE/AD=EC/DC=BC/AC
=>BE/80=EC/60=120/100=6/5
=>BE=96(cm); EC=72(cm)
Ta có: ΔBDH đồng dạng với ΔBEC
nên BD/BE=DH/EC=BH/BC
=>DH/72=BH/120=60/96=5/8
=>DH=45cm; BH=75cm
Ta có;ΔBDH đồng dạng với ΔAEH
nên BD/AE=DH/EH=BH/AH
=>45/EH=75/AH=60/100-72=60/28=15/7
=>EH=45:15/7=45x7/15=21(cm)
Tam giác ABC cân tại A nên B D = D C = B C 2 = 24 2 = 12 ( c m )
Theo định lý Py-ta-go, ta có A D 2 = A C 2 - D C 2 = 20 2 - 12 2 = 16 2
Nên AD = 16cm
Xét ΔCDH và ΔADB có:
C D H ^ = A D B ^ = 90 ∘
C 1 = A 1 (cùng phụ với B)
Do đó ΔCDH ~ ΔADB (g.g)
Nên H D B D = H C A B = C D A D , tức là H D 12 = H C 20 = 12 16 = 3 4
Suy ra HD = 9cm => AH = AD - HD = 16 - 9 = 7cm
Đáp án: B
a) Xét ΔAHE vuông tại E và ΔABD vuông tại D có
\(\widehat{EAH}\) chung
Do đó: ΔAHE\(\sim\)ΔABD(g-g)
Suy ra: \(\dfrac{AH}{AB}=\dfrac{AE}{AD}\)
hay \(AB\cdot AE=AH\cdot AD\)
b) Xét ΔEHA vuông tại E và ΔEBC vuông tại E có
\(\widehat{AHE}=\widehat{CBE}\)(ΔAHE\(\sim\)ΔABD)
Do đó: ΔEHA\(\sim\)ΔEBC(g-g)
Suy ra: \(\dfrac{EH}{EB}=\dfrac{EA}{EC}\)
hay \(EA\cdot EB=EH\cdot EC\)
d) Ta có: ΔABC cân tại A(gt)
mà AD là đường cao ứng với cạnh đáy BC(Gt)
nên AD là đường trung tuyến ứng với cạnh BC
Suy ra: \(BD=DC=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:
\(AD^2+BD^2=AB^2\)
\(\Leftrightarrow AD^2=5^2-3^2=16\)
hay AD=4(cm)
Xét ΔBEC vuông tại E và ΔBDA vuông tại D có
\(\widehat{B}\) chung
Do đó: ΔBEC\(\sim\)ΔBDA(g-g)
Suy ra: \(\dfrac{BE}{BD}=\dfrac{BC}{BA}\)
\(\Leftrightarrow BE=\dfrac{6\cdot3}{5}=\dfrac{18}{5}=3.6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔBEC vuông tại E, ta được:
\(BC^2=BE^2+EC^2\)
\(\Leftrightarrow EC^2=6^2-3.6^2=23.04\)
hay EC=4,8(cm)