\(M\varepsilon MH\)từ M kẻ MH//AB...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

A B C M H I 1 2 2 1

a,Xét tam giác AIH và tam giác MHI có

IH  là cạnh chung

H2^=I1^(MI//AC)

H1^=I2^(MH//AB)

=> tam giác AIH = tam giác MHI(g.c.g)

6 tháng 3 2020

rễ vậy lun

10 tháng 5 2020

Giải thích các bước giải:

a.Ta có : MI//AC,MH//AB→ˆAHI=ˆMIH,ˆAIH=ˆIHMMI//AC,MH//AB→AHI^=MIH^,AIH^=IHM^

→ΔAIH=ΔMHI(g.c.g)→ΔAIH=ΔMHI(g.c.g)

b.Từ câu a →AI=MH→AI=MH

Mà HM//AB,ΔABCHM//AB,ΔABC cân tại A →ˆHMC=ˆABC=ˆACB→ΔHMC→HMC^=ABC^=ACB^→ΔHMC cân tại H
→HM=HC→AI=HC→HM=HC→AI=HC

c.Ta có : ΔABCΔABC cân tại A, MI//AC→ˆIBM=ˆACB=ˆIMBMI//AC→IBM^=ACB^=IMB^

→IB=IM→IB=IM

Do HI là trung trực của MN →IM=IN→IB=IN→IM=IN→IB=IN

d.Ta có :

IHIH là trung trưc của MN
→ˆIHD=180o−ˆIHN=180o−ˆIHM=ˆAHI+ˆMHC=ˆAHI+ˆIAH=ˆDIH→IHD^=180o−IHN^=180o−IHM^=AHI^+MHC^=AHI^+IAH^=DIH^

→DI=DH→DI=DH

→PADH=AD+DH+HA=AI+ID+DI+HA=2DI+HC+AH=2DI+AC→PADH=AD+DH+HA=AI+ID+DI+HA=2DI+HC+AH=2DI+AC

→PADH→PADH thay đổi

imagerotate

a:

Xét tứ giác AIMH có

MH//AI

MI//AH

Do đó: AIMH là hình bình hành

Xét ΔAIH và ΔMHI có

AI=MH

IH chung

AH=MI

Do đó: ΔAIH=ΔMHI

b: 

Xét ΔHMC có \(\widehat{HMC}=\widehat{C}\)

nên ΔHMC cân tại H

=>HM=HC

hay HC=AI

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.a) CMR: tam giác ADE cânb)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.d) CMR: HK // BCe) cho HB cắt CK ở N. CMR: A,M,N thẳng hàngbài 2: cho tam giác abc vuông cân tại a , d là đường...
Đọc tiếp

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.

a) CMR: tam giác ADE cân

b)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.

d) CMR: HK // BC

e) cho HB cắt CK ở N. CMR: A,M,N thẳng hàng

bài 2: cho tam giác abc vuông cân tại a , d là đường thẳng bất kỳ qua a ( d không cắt đoạn bc). từ b và c kẻ bd và ce cùng vuông góc với d.

a)CMR: bd // ce

b)CMR: \(\Delta adb\)\(\Delta cea\)

c)CMR: bd + ce = de

d)gọi m là trung điểm của bc.CMR: \(\Delta dam\)\(\Delta ecm\)và tam giác dme vuông cân

bài 3: cho tam giác abc cân tại A (\(\widehat{a}\)< 45o), lấy m\(\in\)bc. từ m kẻ mh // ab (h\(\in\)ac), kẻ mi // ac (i\(\in\)ab).

a)CMR: \(\Delta aih\)=\(\Delta mhi\)

b)CMR: ai = hc

c)Lấy N sao cho hi là trung trực của mn. CMR: in = ib

0