K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

Sửa câu a thành CM: BM = CM 

A B C D E M K

  GT  

 △ABC cân tại A ( BAC = 70o)

 BAM = MAC = BAC/2

 MD ⊥ AB (D \in  AB) ;ME ⊥ AC (E \in AC)

 ME = MK

  KL

 a, BM = CM

 b, △DME cân

 c, DE // BC

 d, MDK = ?

Bài giải:

Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB

Xét △BAM và △CAM

Có: AB = AC (cmt)

    BAM = MAC (gt)

   AM là cạnh chung

=> △BAM = △CAM (c.g.c)

=> BM = CM (2 cạnh tương ứng)

b, Xét △DBM vuông tại D và △ECM vuông tại E

Có: BM  = MC (cmt)

   DBM = ECM (cmt)

=> △DBM = △ECM (ch-gn)

=> DM = EM (2 cạnh tương ứng)

Xét △DME có: DM = EM (cmt) => △DME cân tại M

c, Vì △DBM = △ECM (cmt)

=> DB = EC (2 cạnh tương ứng))

Ta có: AD + DB = AB

AE + EC = AC

Mà AB = AC (cmt) ; DB = EC (cmt)

=> AD = AE 

Xét △ADE có: AD = AE (cmt) => △ADE cân tại A => ADE = (180o - DAE) : 2   (1)

Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2    (2)

Từ (1) và (2) => ADE = ABC

Mà 2 góc này nằm ở vị trí đồng vị

=> DE // BC (dhnb)

d, Ta có: ABC = (180o - BAC) : 2 (cmt)

=> ABC = (180o - 70o) : 2 = 110o : 2 = 55o 

Mà ABC = ACB (cmt)

=> ACB = 55o 

Xét △BMK và △CME

Có: BM = MC (cmt)

    BMK = EMC (2 góc đối đỉnh)

      MK = ME (gt)

=> △BMK = △CME (c.g.c)

=> MBK = MCE (2 góc tương ứng)

Mà MCE = 55o 

=> MBK = 55o 

Ta có: DBK = DBM + MBL = 55o + 55o = 110o 

Lại có: DMB = EMC (△DBM = △ECM)

Mà EMC = BMK (2 góc đối đỉnh)

=> DMB = BMK

Ta có: MK = ME (gt)

Mà ME = DM (cmt)

=> DM = MK

Xét △BDM và △BKM

Có: BM là cạnh chung

      DMB = BMK (cmt)

      MD = MK (cmt)

=> △BDM = △BKM (c.g.c)

=> BD = BK (2 cạnh tương ứng)

=> △BDK cân tại B

=> BDK = (180o - KBD) : 2 = (180o - 110o) : 2 = 70o : 2 = 35o 

Ta có: BDM + MDA = 180o (2 góc kề bù)

=> BDK + MDK + 90o = 180o 

=> BDK + MDK = 90o 

=> 35o + MDK = 90o 

=> MDK = 55o 

30 tháng 1 2020

Cho tam giác ABC. Lấy D,E trên cạnh AB sao cho AD=DE=EB. vẽ DG và EF song song với BC (F và G thuộc AC)

a,  chứng minh: AG=GF=FC

b,  giả sử DG=3cm.  Tính BC

Bài 2: 

Đặt số đo góc B là x, số đo góc C là y

Theo đề, ta có:

\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)

3 tháng 2 2017

E C B A D I

A)Xét tam giác ADB và tam giác AEC có 

\(\widehat{AEC}=\widehat{ADB=90}^0\left(GT\right)\)

\(AB=AC\left(GT\right)\)

\(\widehat{A}chung\)

Từ ba điều trên => tam giác ABD= tam giác AEC( G.C.G)

=> BD=CE( 2 CẠNH T/Ư)

B) Xét tam giác AED, có: \(AE=AD\)(tam giác ADB= tam giác AEC)

=> Tam giác AED là tam giác cân 

C) câu c) mk chư bt lm 

18 tháng 2 2017

c ) +)Xét tam giác AEI và tam giác ADI có :

                 \(\widehat{E}=\widehat{D}\left(=90\right)^o\)

                  AE = AD ( cmt )

                  AI chung 

=> Tam giác AEI = Tam giác ADI ( ch - cgv)

=> Góc DAI = Góc EAI ( hai góc tương ứng ) 

Mà AI nằm giữa AB và AC nên AI là đường phân giác của góc BAC( ĐPCM )

+) Gọi điểm H là giao của BC và AI .

Xét tam giác ABC có :

       BD là đường cao thứ nhất

       CE là đường cao thứ hai 

=> AH phải là đường cao thứ ba (t/c đường cao trong tam giác )

=> \(Ah⊥BC\)

Mà I thuộc AH =>  \(AI⊥BC\)

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNHBài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng : a) AE = BC; b)AB // ECBài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BCBài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân...
Đọc tiếp

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNH

Bài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng :

a) AE = BC; b)AB // EC

Bài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BC

Bài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân giác của góc xOy cắt AB ở C. Chứng minh rằng

a) C là trung điểm của AB

b) AB vuông góc với OC

Bài 4: Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Trên tia đối của tia BC và CB lấy tương ứng hai điểm D và E sao cho BD = CE. Chứng minh rằng AM là tia phân giác của góc BAC và DAE

Bài 5: Cho tam giác ABC có góc A = 1000, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA

a) Tính số đo góc ABK

b) về phía ngoài tam giác ABC, vẽ các đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh rằng: tam giác ABK bằng tam giác DAK

c) Chứng minh MA vuông góc với DE

Bài 6: Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Chứng minh rằng DE//BC và DE = 1/2 BC

Bài 7: Cho tam giác ABC vuông tại A, M là trung điểm của BC. Chứng minh rằng AM =1/2BC

Bài 8: Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC

a) Chứng minh rằng DE vuông góc với BC

b) Cho biết 4B = 5C trung điểm của BC. Chứng minh rằng :

a) FH = 2DE.

b) FH vuông góc với DE.

3
15 tháng 12 2016

nhìu quá bn à TTvTT

23 tháng 12 2016

từ từ thui