K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2015

Câu b.
Ta có tam giác EOH cân tại O
=> góc OEH=goc OHE
=> góc OHE= góc EHB (vì AHB cân Có HE là đường cao đồng thời là đường phân giác )
xét tứ giác EHDB nt
có gócEHB=gócEDB (cùng chắn EB)
=> góc OEH=gócEDB
Xét ttam giác EHD cân tại H ( H là  trực tâm trong tam giác ABC cân)
có góc HED=góc HDE 
mà góc HDE+gocEDB=90độ
=> góc HED+gocOEH=90độ
<=>OE vuông góc ED
câu c.
Xét tam giác BDA vuong tại D
AB2=AD2+DB2 (pytago)
AD2=AB2-BD2
AD2=169-25
AD2=144
AD=12
Xet tam giác OED vuông tại E có:
tam giác EHD cân => tam giác HEO cân  ( trong tam giác vuông đường trung tuyến là một đoạn thẳng nối từ đỉnh của tam giác tới trung điểm của cạnh đối diện, sẽ chia ra 2 cạch = nhau )
Xét (O) có
O là trung điểm AH
=>OA=OH
Ta lại có H là trung điểm OD
do đó OA=OH=HD
mà AD=12
=>OA=OH=HD=12/3
=>OA=4cm

22 tháng 10 2017

ko có câu a à bn

a: Ta có: D là tâm đường tròn đường kính BC

=>D là trung điểm của BC

=>BD=5cm

=>AD=12cm

b: Xét (D) có

ΔBFC nội tiếp

BC là đường kính

Do đó; ΔBFC vuông tại F

Xét (D) có

ΔBEC nội tiếp

BC là đường kính

Do đó:ΔBCE vuông tại E

Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)

nên AEHF là tứ giác nội tiếp

CÂU 1 :tìm giá trị m để đồ thị 3 hàm số : y=(m-1)x+3;y=x-1 và y=2x+3 cắt nhau tại 1 điểm CÂU 2: cho tam giác ABC cân tại A .Vẽ đường tâm D đường kính BC cắt AB,AC lần lượt ở E và F. Các dây BF và CE cắt nhau tại H a)Cho BC=10cm; AB=13cm.tính AD b)chứng minh A,E,H,F thuộc 1 đường tròn .xác định tâm O của đường tròn đó c)chứng minh DE là tiếp tuyến của đường tròn tâm O CÂU 3: cho đường tròn...
Đọc tiếp

CÂU 1 :tìm giá trị m để đồ thị 3 hàm số : y=(m-1)x+3;y=x-1 và y=2x+3 cắt nhau tại 1 điểm CÂU 2: cho tam giác ABC cân tại A .Vẽ đường tâm D đường kính BC cắt AB,AC lần lượt ở E và F. Các dây BF và CE cắt nhau tại H a)Cho BC=10cm; AB=13cm.tính AD b)chứng minh A,E,H,F thuộc 1 đường tròn .xác định tâm O của đường tròn đó c)chứng minh DE là tiếp tuyến của đường tròn tâm O CÂU 3: cho đường tròn (O;R), đường kính AB,dây cung BC=R. a)tính các cạnh và các góc chưa biết của tam giác ABC theo R b)đường thẳng qua O vuông góc vs AC cắt tiếp tuyến tại A của đường tròn (O) ở D.chứng minh OD là đường trung trực của đoạn AC.Tam giác ADC là tam giác gì?Vì sao? c)chứng minh DC là tiếp tuyến của đường tròn (O) CÂU 4:cho 2 đường tròn (O) và (O') tiếp xúc ngoài tại A. kẻ tiếp tuyến chung ngoài BC, B thuộc (O),C thuộc (O').Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I a)CMR: GÓC BAC=90 độ b) tính số đo góc OIO' c)tính độ dài BC,biết OA=5cm;O'A=4cm

0
7 tháng 11 2021

a) Tam giác ABC nội tiếp đường tròn (O) đường kính BC

=> OA=OB=OC và O là trung điểm của BC

=> Tam giác ABC vuông tại A

=> góc BAC = 90 độ

b) DO tam giác HAK nội tiếp đường tròn (I) 

Lại có góc HAK = 90 độ

=> HK là đường kính của (I)

=> HK đi qua I

=> H,I,K thẳng hàng

c) Đề bài ghi ko rõ

d) 3 điểm nào?

a: Xét tứ giác BOCE có \(\widehat{EBO}+\widehat{ECO}=90^0+90^0=180^0\)

nên BOCE là tứ giác nội tiếp đường tròn đường kính EO

Tâm là trung điểm của EO

Bán kính là EO/2

b: Xét (O) có

DA,DC là các tiếp tuyến

Do đó: DA=DC

=>D nằm trên đường trung trực của AC

Xét (O) có

DA,DC là các tiếp tuyến

Do đó: OD là phân giác của góc AOC

=>\(\widehat{AOC}=2\cdot\widehat{COD}\)

Xét (O) có

EC,EB là các tiếp tuyến

Do đó: OE là phân giác của góc COB

=>\(\widehat{COB}=2\cdot\widehat{COE}\)

Xét (O) có

EC,EB là các tiếp tuyến

Do đó: EC=EB

Ta có: \(\widehat{COA}+\widehat{COB}=180^0\)

=>\(2\cdot\left(\widehat{COD}+\widehat{COE}\right)=180^0\)

=>\(2\cdot\widehat{DOE}=180^0\)

=>\(\widehat{DOE}=90^0\)

Xét ΔDOE vuông tại O có OC là đường cao

nên \(CD\cdot CE=OC^2\)

mà CD=DA và CE=EB

nên \(DA\cdot EB=OC^2\)

=>\(4\cdot DA\cdot EB=4\cdot OC^2=\left(2\cdot OC\right)^2=AB^2\)

c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO

OH vuông góc MN

=>MN là đường kính của (H)

=>HM=HN

20 tháng 5 2019

A B C D E F H O

a) Ta có \(\widehat{BEC},\widehat{BFC}\) là 2 góc nội tiếp chắn nửa đường tròn\(\Rightarrow\widehat{BEC}=\widehat{BFC}=90^0\Rightarrow\widehat{HFA}=\widehat{AEH}=90^0\)

Xét tứ giác AEHF có \(\widehat{HFA}+\widehat{AEH}=90^0+90^0=180^0\)

Suy ra tứ giác AEHF nội tiếp hay 4 điểm A,E,H,F cùng thuộc đường tròn tâm O

b) Ta có \(\widehat{BEC}=\widehat{BFC}=90^0\) Suy ra tứ giác BFEC nội tiếp \(\Rightarrow\widehat{AEF}=\widehat{ABC}\)

\(\widehat{AFE}=\widehat{AEF}\)

Suy ra \(\widehat{AFE}=\widehat{ABC}\)\(\Rightarrow\widehat{AHE}=\widehat{ACB}\Rightarrow\widehat{HAE}=\widehat{EBD}=\widehat{DEB}\)

Suy ra DE là tiếp tuyến của (O)