Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh được tam giác ABD = tam giác ACE (c-g-c) => AD = AE
Từ đó tam giác ADE cân tại A.
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
Hình vẽ:
Giải:
Vì tam giác \(ABC\) cân tại \(A\):
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( góc bù )
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC \) \(\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\) \(\left(cmt\right)\)
\(BD=CE \) \(\left(gt\right)\)
Do đó: \(\Delta ABD=\Delta ACE\) \(\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) ( cặp cạnh tương ứng )
\(\Rightarrow\Delta ADE\) cân tại \(A\).
Bài làm
Bạn tự vẽ hình nhé
Vì tam giác ABCABC cân tại A:
⇒ˆABC=ˆACB⇒ABC^=ACB^
⇒ˆABD=ˆACE⇒ABD^=ACE^ ( góc bù )
Xét ΔABDΔABD và ΔACEΔACE có:
AB=ACAB=AC (gt)
ˆABD=ˆACEABD^=ACE^ (cmt)
BD=CEBD=CE (gt)(gt)
Do đó: ΔABD=ΔACEΔABD=ΔACE (c.g.c)(c.g.c)
⇒AD=AE⇒AD=AE ( cặp cạnh tương ứng )
⇒ΔADE⇒ΔADE cân tại A
Bài 8:
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó:ΔABD=ΔACE
Suy ra: AD=AE
b: ta có: ΔABD=ΔACE
nên \(\widehat{ADB}=\widehat{AEC}\)
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE
Ta có hình vẽ:
Xét tam giác ABD và tam giác ACE có:
AB = AC (do tam giác ABC cân)
góc ABC = góc ACB (do tam giác ABC cân)
BD = CE (GT)
Vậy tam giác ABD = tam giác ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> tam giác ADE cân tại A
tam giác ABC cân =>góc B=góc C
=>góc ABD=góc ACE (dựa vào 2 góc kề bù)
Xét tam giác ABD và tam giác ACE có
AB=AC(tam giác ABC cân)
góc ABD= góc ACE(cmt)
BD=CE(GT)
=>tam giác ABD = tam giác ACE (c-g-c)
=>AD=AE(2 cạnh tương ứng)
=>tam giác ADE cân tại A
Xét \(\Delta\)ABD và \(\Delta\)ACE có :
AB = AC ( gt )
\(\widehat{ABC}=\widehat{ACB}\) ( \(\Delta ABC\) cân tại A )
BD = CE ( gt )
\(\Rightarrow\) \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\Rightarrow AD=AE\) ( 2 cạnh tương ứng )
\(\Rightarrow\) \(\Rightarrow\Delta ADE\) cân tại A ( đpcm )
Xét ΔΔABD và ΔΔACE có :
AB = AC ( gt )
ˆABC=ˆACBABC^=ACB^ ( ΔABCΔABC cân tại A )
BD = CE ( gt )
⇒⇒ ΔABD=ΔACE(c.g.c)ΔABD=ΔACE(c.g.c)
⇒AD=AE⇒AD=AE ( 2 cạnh tương ứng )
⇒⇒ ⇒ΔADE⇒ΔADE cân tại A ( đpcm)