K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

Hình:

A C B D E F

Giải:

a) Xét tam giác ABC cân tại A có đường trung tuyến AE

Suy ra AE đồng thời là đường phân giác của góc CAB

\(\Rightarrow\widehat{CAE}=\dfrac{1}{2}\widehat{CAB}\)

Xét tương tự với tam giác CAD, ta được:

\(\widehat{CAF}=\dfrac{1}{2}\widehat{CAD}\)

Ta có: \(\widehat{CAB}+\widehat{CAD}=180^0\) (Hai góc kề bù)

\(\Rightarrow\widehat{CAE}+\widehat{CAF}=\widehat{EAF}\)

\(\Leftrightarrow\dfrac{1}{2}\widehat{CAB}+\dfrac{1}{2}\widehat{CAD}=\widehat{EAF}\)

\(\Leftrightarrow\dfrac{1}{2}\left(\widehat{CAB}+\widehat{CAD}\right)=\widehat{EAF}\)

\(\Leftrightarrow\dfrac{1}{2}180^0=\widehat{EAF}\)

\(\Leftrightarrow\widehat{EAF}=90^0\) (1)

b) Ta có tam giác ABC cân tại A có đường trung tuyến AE

Suy ra AE đồng thời là đường cao của góc CAB

\(\Rightarrow\widehat{AEC}=90^0\) (2)

Chứng minh tương tự với tam giác CAD, ta được:

\(\Rightarrow\widehat{AFC}=90^0\) (3)

Từ (1), (2) và (3)

Suy ra tứ giác AECF là hình chữ nhật

\(\Rightarrow AF//BC\)

\(\Rightarrow CF\perp CE\)

Mà F thuộc CD, E thuộc BC

\(\Rightarrow CD\perp BC\)

Vậy ...

20 tháng 5 2018

20 tháng 5 2018

ta có:

^abc + ^adc = ^chjdsk