K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2022

Do tam giác ABC cân AB =4cm, AC = 8cm => BC = 8cm

Chu vi tam giác sẽ là: 4 +8 +8 = 20cm

Đáp án C

Các bạn muốn giải đáp thắc mắc hoặc kèm thêm toán thì có thể liên hệ nhé

11 tháng 5 2022

Do tam giác ABC cân AB =4cm, AC = 8cm => BC = 8cm

Chu vi tam giác sẽ là: 4 +8 +8 = 20cm

4 tháng 4 2021

Theo bất đẳng thức tam giác và hệ quả ta có:

            AB - AC < BC < AB + AC 

=> 6<BC<10

theo đề bài=> BC=8

=> chu vi hình Tam giác= 18 cm (chọn câu C)

12 tháng 5 2021

ta có

AB<AC<BC (12<16<20)

=> góc đối diện của cạnh AB bé nhất : góc C

=> góc đối diện với cạnh BC lớn nhất : góc A

=>góc C < góc B < góc A

15 tháng 3 2021

Xét \(\Delta ABC\)ta có :

\(\hept{\begin{cases}AB^2+AC^2=12^2+16^2=400\\BC^2=20^2=400\end{cases}\Rightarrow}AB^2+AC^2=BC^2\)

=> \(\Delta ABC\)vuông tại A

=> \(\widehat{A}=90^0\)

=> \(\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(90^0+55^0\right)=35^0\)

Vậy : ...

15 tháng 3 2021

Đố nay khi ăn ổi có cái gì đáng sợ nhất?

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=12^2+16^2=400\)

hay AB=20(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=AC^2-AH^2=20^2-12^2=256\)

hay HC=16(cm)

Ta có: BH+HC=BC(H nằm giữa B và C)

nên BC=16+16=32(cm)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+BC+AC=20+32+20=72\left(cm\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:

Áp dụng định lý Pitago cho tam giác $AHC$ vuông tại $H$:

$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

Áp dụng định lý Pitago cho tam giác $AHB$ vuông tại $H$:

$AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20$ (cm)

Chu vi tam giác $ABC$:

$AB+BC+AC=AB+BH+CH+AC=20+16+16+20=72$ (cm)

8 tháng 2 2020

cho tam giác ABC vuông tại A tính cạnh BC trong các trường hợp sau:

Áp dụng định lý Py-ta-go trong tam giác ABC vuông tại A: BC^2 = AB^2 + AC^2

Thay vào từng trường hợp thì

a, AB=8cm, AC=6cm

=>BC^2=8^2+6^2=100

=>BC=10 cm

b, AB=18cm, AC=24cm

=>BC^2=18^2 + 24^2 = 900

=>BC=30 cm

c, AB=5cm, AC=12cm

=>BC^2= 5^2 + 12^2 =169

=>BC=13 cm

d, AB=12cm. AC=16cm

=>BC^2= 12^2 + 16^2 = 400

=>BC=20 cm

8 tháng 2 2020

tam giác ABC vuông tại A (gt)

=> AB^2 + AC^2 = BC^2 (đl Pytago)    (1)

a, AB=8cm, AC=6cm và (1)

=> BC^2 = 8^2 + 6^2

=> BC^2 = 100

=> BC = 10 do BC > 0

b, AB=18cm, AC=24cm   và (1)

=> BC^2 = 18^2 + 24^2 

=> BC^2 = 900

=> BC = 30 do BC > 0

c, AB=5cm, AC=12cm

=> BC^2 = 5^2 + 12^2

=> BC^2 = 169

=> BC = 13 do BC > 0

d, AB=12cm. AC=16cm

=> BC^2 = 12^2 + 16^2

=> BC^2 =400

=> BC = 20 do BC >0

Trường hợp 1: BC=18cm

=>NHận

=>C=AB+BC+AC=36+8=44(cm)

TRường hợp 2: BC=8cm

=>LOại

b) Ta có: G là trọng tâm của ΔBAC(gt)

mà AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

nên \(AM=\dfrac{3}{2}\cdot AG\)(Định lí)

\(\Leftrightarrow AM=\dfrac{3}{2}\cdot4=6\left(cm\right)\)

Ta có: ΔABC cân tại A(cmt)

mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

Ta có: M là trung điểm của BC(gt)

nên \(BM=CM=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AB^2=6^2+8^2=100\)

hay AB=10(cm)

Vậy: AM=6cm; AB=10cm

a) Xét ΔABC có:

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

AM là đường phân giác ứng với cạnh BC(Gt)

Do đó: ΔABC cân tại A(Định lí tam giác cân)