Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C 5 5 8 H D E
Cm: Ta có: AB = AC <=> t/giác ABC là t/giác cân tại A
<=> góc B = góc C
Xét t/giác ABH và t/giác ACH
có góc BHA = góc CHA = 900 (gt)
AB = AC = 5 cm (gt)
góc B = góc C (cmt)
=> t/giác ABH = t/giác ACH (ch - gn)
=> BH = CH (hai cạnh tương ứng)
=> góc BAH = góc CAH (hai góc tương ứng)
b) Ta có: BH = CH = BC/2 = 8/2 = 4 (cm)
Xét t/giác ABH vuông tại H (áp dụng định lí Pi - ta- go)
=> AB2 = AH2 + BH2
=> AH2 = 52 - 42 = 9 = 32
=> AH = 3 (cm)
c) Xét t/giác ADH và t/giác AEH
có góc ADH = góc AEH = 900(gt)
AH : chung
góc DAH = góc EAH (cmt)
=> t/giác ADH = t/giác AEH (ch - gn)
=> HD = HE (hai cạnh tương ứng)
=> t/giác HDE là t/giác cân tại H
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
Vì \(\Delta ABC\) cân tại A nên AB=AC (đ/n) và \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta EBC\) và \(\Delta DCB\) có :
\(\widehat{EBC}=\widehat{DCB}\)
BC chung
\(\widehat{BEC}=\widehat{CDB}\) (=90o)
=> \(\Delta EBC\)=\(\Delta DCB\)(cgv-gnk)
=> BD=CE( cctư) (đpcm)
b) Vì \(\Delta EBC\)=\(\Delta DCB\)nên \(\widehat{IBC}=\widehat{ICB}\)(cgtư)
Xét\(\Delta IBC\)Có :\(\widehat{IBC}=\widehat{ICB}\)=> \(\Delta IBC\)cân=> IB=IC(đ/n)
c) Gọi giao điểm của AI và BC là O
Vì \(\widehat{ABC}=\widehat{ACB}\) và \(\widehat{IBC}=\widehat{ICB}\) nên \(\widehat{ABI}=\widehat{ACI}\)
Xét \(\Delta ABI\) và \(\Delta ACI\) có :
AB=AC
\(\widehat{ABI}=\widehat{ACI}\)
IB=IC
=> \(\Delta ABI=\Delta ACI\left(c.g.c\right)\)
=> \(\widehat{BAI}=\widehat{CAI}\left(cgtư\right)\)
Xét \(\Delta ABO\) và \(\Delta ACO\) có :
AB=AC
\(\widehat{ABO}=\widehat{ACO}\)
\(\widehat{BAO}=\widehat{CAO}\)
=> \(\Delta ABO=\Delta ACO\left(c.g.c\right)\)
=> \(\widehat{BOA}=\widehat{COA}\left(cgtư\right)\)
mà \(\widehat{BOA}+\widehat{COA}=180^o\)
=> \(\widehat{BOA}=\widehat{COA}\left(=90^o\right)\)
hay AI\(\perp\)BC (đpcm)
Nhiều thế.
Bài 1:
B C A
Xét \(\Delta ABC\)có \(AB=AC\)
\(\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow\widehat{B}=\widehat{C}=70\)độ
\(\Rightarrow\widehat{A}=180-70-70\)
\(\Rightarrow\widehat{A}=40\)độ
(Mình làm hơi nhanh khúc tính nhé tại đang bận!)
Tiếp nè: Bài 2
A B C H
Bạn xét 2 lần pytago là ra nhé. Lần 1 với \(\Delta AHC\). Lần 2 với \(\Delta AHB\). Thế là xong 2 câu a,b
Bài 3:
B A C H
a) Ta có \(\Delta ABC\)cân tại \(A\)
\(\Rightarrow AH\)vừa là đường cao vừa là trung tuyến
\(\Rightarrow HB=HC\)
b) Câu này không có yêu cầu.
c + d: Biết là \(\widehat{HDE}=90\)và \(\Delta HDE\)nhưng không nghĩ ra cách làm :(
Câu 4:
a: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
b: ta có: ABDC là hình bình hành
nên AB//DC
c: Xét hình bình hành ABDC có AB=AC
nên ABDC là hình thoi
=>CB là tia phân giác của góc ACD
Ta có AC - AB < BC < AC + AB ⇒ 2 < BC < 8 mà tam giác ABC cân nên BC = 3cm hoặc BC = 5cm. Chọn D