Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai đường thẳng chứa hai tia Ax và By có song song với nhau. Vì \(\widehat {xAB} = \widehat {yBA}( = 60^\circ )\), mà hai góc này ở vị trí so le trong nên Ax // By (Dấu hiệu nhận biết 2 đường thẳng song song).
a) Ta có: mà hai góc đó là hai góc so le trong nên
suy ra (1)
mà hai góc đó là hai góc so le trong nên suy ra (2)
Từ (1) và (2) suy ra Ax và Ay cùng // BC.
Lại có tia Ax thuộc mặt phẳng bờ AB có chứa điểm C, tia Ay thuộc mặt phẳng
bờ AB không chứa điểm C
Ax và Ay là hai tia đối nhau.
b) Vì Ax và Ay là hai tia đối nhau (cmt) mà và
nên suy ra
Mà nên suy ra
a, ta có : BAx = 1300
ABD = 500
-> BAx + ABD = 1300 + 500 = 1800
=> BAx và ABD là cặp góc cùng phía bù nhau
=> Ax // BD
b, Ax // BD => C1 = A45 ( So le trong )
=> C1 + A3 = A45 + A3 = A345 = 1300
Góc B = 50 độ
Vậy B + C1 + A3 = 180 độ
=> Tổng 3 góc trong tam giác ABC = 1800
c, A12345 = 180 0
A345 = 1300
=> A12 = 500
AF là phân giác của A12 => A1 = A2 = 500/2 = 250
AD là phân giác của A345 => A34 = A5 = 650
=> A3 + A34 = 250 + 650 = 900
ta có : FAD = 900
=> AF vuông góc với AC
\(\angle xAB=\dfrac{7}{2} \angle ABy\)
nếu bạn vẽ góc ABy = 30 độ thì vẽ góc xAB=105 độ