Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ: ID⊥AB, IE⊥BC, IF⊥AC
Xét hai tam giác vuông ΔIBD và ΔIEB, ta có:
∠(DBI) =∠(EBI) (gt)
∠(IDB) =∠(IEB) =90o
BI cạnh chung
Suy ra: ΔIDB= ΔIEB(cạnh huyền, góc nhọn)
Suy ra: ID = IE ( hai cạnh tương ứng)
Xét hai tam giác vuông ΔIEC và ΔIFC, ta có:
∠(ECI) =∠(FCI)
∠(IEC) =∠(IFC) =90o
CI cạnh huyền chung
Suy ra: ΔIEC= ΔIFC(cạnh huyền góc nhọn)
Suy ra: IE = IF (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: ID = IF
Xét hai tam giác vuông ΔIDA và ΔIFA, ta có:
ID=IF
∠(IDA) =∠(IFA) =90o
AI cạnh huyền chung
Suy ra: ΔIDA= ΔIFA(cạnh huyền.cạnh góc vuông)
Suy ra: ∠(DAI) =∠(FAI) (hai góc tương ứng)
Vậy AI là tia phân giác góc A
Xét ΔABC có
BI là phân giác
CI là phân giác
BI cắt CI tại I
Do đó: I là tâm đường tròn nội tiếp ΔABC
=>AI là tia phân giác của góc BAC
Sửa đề: Phân giác góc B,C cắt nhau tại I
Kẻ ID⊥AB tại D, IF⊥AC tại F, IE⊥BC tại E
Xét ΔIDB vuông tại D và ΔIEB vuông tại E có
IB chung
\(\widehat{DBI}=\widehat{EBI}\)(BI là tia phân giác của \(\widehat{DBE}\))
Do đó: ΔIDB=ΔIEB(cạnh huyền-góc nhọn)
⇔ID=IE(hai cạnh tương ứng)(1)
Xét ΔIEC vuông tại E và ΔIFC vuông tại F có
IC chung
\(\widehat{ECI}=\widehat{FCI}\)(CI là tia phân giác của \(\widehat{ECF}\))
Do đó: ΔIEC=ΔIFC(cạnh huyền-góc nhọn)
⇒IE=IF(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra ID=IF(=IE)
Xét ΔADI vuông tại D và ΔAFI vuông tại F có
AI chung
ID=IF(cmt)
Do đó: ΔADI=ΔAFI(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{DAI}=\widehat{FAI}\)(hai góc tương ứng)
⇒\(\widehat{BAI}=\widehat{CAI}\)
mà tia AI nằm giữa hai tia AB,AC
nên AI là tia phân giác của \(\widehat{BAC}\)(đpcm)