K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
12 tháng 2 2022
a: Xét ΔBDI có \(\widehat{DIB}=\widehat{DBI}\left(=\widehat{IBC}\right)\)
nên ΔBDI cân tại D
b: Xét ΔEIC có \(\widehat{EIC}=\widehat{ECI}\)
nên ΔEIC cân tại E
Ta có: DE=DI+IE
nên DE=BD+EC
CM
24 tháng 10 2017
Ta có: DI // BC (giả thiết)
Suy ra:∠I1 =∠B1(so le trong) (1)
Lại có:∠B1 =∠B2 (2)
(vì BI là tia phân giác góc ABC)
Từ (1) và (2) suy ra:∠I1 =∠B2
=>∆BDI cân tại D =>BD=DI (3)
Mà IE // BC (gt) => ∠I2 =∠C1 (so le trong) (4)
Đồng thời: ∠C1=∠C2 (vì CI là phân giác của góc ACB) (5)
Từ (4) và (5) suy ra: ∠I2=∠C2. Suy ra ∠CEI cân tại E
Suy ra: CE = EI (6)
Từ (3) và (6) suy ra: BD + CE = DI + EI = DE
A B C I D E 1 2 1 2 1 2
\(\widehat{I_1}=\widehat{B_2}\)(2 góc slt của DE // BC) mà\(\widehat{B_1}=\widehat{B_2}\)(BI là phân giác góc ABC)\(\Rightarrow\widehat{I_1}=\widehat{B_1}\Rightarrow\Delta BDI\)cân tại D => BD = DI
\(\widehat{I_2}=\widehat{C_2}\)(2 góc slt của DE // BC) mà\(\widehat{C_1}=\widehat{C_2}\)(CI là phân giác góc ACB)\(\Rightarrow\widehat{I_2}=\widehat{C_1}\Rightarrow\Delta IEC\)cân tại E => IE = EC
Vậy DE = DI + IE = BD + CE (đpcm)
A B C I D E
Vì DE song song với BC => \(\widehat{DIB}=\widehat{IBC}\) ( SLT) . Mà \(\widehat{IBC}=\widehat{DBI}\) ( BI là p/g của \(\widehat{ABC}\) ) => \(\widehat{DIB}=\widehat{DBI}\) theo định lý => tam giác DIB cân tại D => DB = DI
Vì DE song song với BC => \(\widehat{EIC}=\widehat{ICB}\)( SLT) .Mà \(\widehat{ECI}=\widehat{ICB}\) ( CI là p/g của \(\widehat{ECB}\) ) => \(\widehat{EIC}=\widehat{ECI}\) .Theo định lý => tam giác IEC cân tại E => EI = EC
Vì DE = DI + IE . Mà DI = DB ; IE = EC => DE = DB + CE
Vậy DE = DB + CE