Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)
GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
Gọi G là trọng tâm của tam giác ABC, khi đó ta có:
GC=23GE=23.12=8(cm)GC=23GE=23.12=8(cm)
GB=23BD=23.9=6(cm)GB=23BD=23.9=6(cm), ▲BGC có 102 = 62 + 82 hay BC2 = BG2 + CG2
=> ▲BGC vuông tại G hay BD vuông góc CE
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
b: ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC=DB/EC
=>8/CE=10/12=5/6
=>CE=8:5/6=8*6/5=9,6cm
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm
a) ad tính chất 3 đường trung tuyến đồng quy
=> BG=2/3BD
=> BG=8
Và: CG=2/3CE
=> CG=6
AD pytago:
=> BC^2=BG^2+CG^2
(giải thích chỗ này nhá) do: BC^2=8^2+6^2
=> BC^2=100
=> BC =10
b) Cx ad PYTAGO:
=> DE^2=EG^2+GD^2
=> DE^2=4^2+3^2
=> DE^2=25
=> DE=5