Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADCP có
N là trung điểm của AC
N là trung điểm của DP
Do đó: ADCP là hình bình hành
a: Xét tứ giác ADCP có
N là trung điểm của AC
N là trung điểm của DP
Do đó: ADCP là hình bình hành
a: Xét tứ giác ADCP có
N là trung điểm của AC
N là trung điểm của DP
Do đó: ADCP là hình bình hành
a: Xét tứ giác APCD có
N là trung điểm của AC
N là trung điểm của PD
Do đó: APCD là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra:MN//BC
hay BMNC là hình thang
Sửa đề: MN=MP
a: Xét tứ giác ANBP có
M là trung điểm chung của AB và NP
=>ANBP là hình bình hành
b: Ta có: ANBP là hình bình hành
=>AP//NB và AP=NB
Ta có: AP//NB
N\(\in\)BC
Do đó: AP//NC
Ta có: AP=NB
NB=NC
Do đó: AP=NC
Xét tứ giác APNC có
AP//NC
AP=NC
Do đó: APNC là hình bình hành
=>AC=NP
Tia đối của MN có điểm P thì $NP>MN$ bạn nhé. Bạn xem lại đề.
a: Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC và \(MN=\dfrac{BC}{2}\)
=>MI//BH
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH
b: Xét ΔABC có
P,N lần lượt là trung điểm của CB,CA
=>PN là đường trung bình của ΔABC
=>PN//AB và PN=AB/2
Ta có: PN//AB
Q\(\in\)PN
Do đó: PQ//AB
Ta có: \(PN=\dfrac{AB}{2}\)
\(PN=\dfrac{PQ}{2}\)
Do đó: AB=PQ
Xét tứ giác ABPQ có
PQ//AB
PQ=AB
Do đó: ABPQ là hình bình hành
c: Ta có: NP//AB
M\(\in\)AB
Do đó: NP//AM
Ta có: \(NP=\dfrac{AB}{2}\)
\(AM=\dfrac{AB}{2}\)
Do đó: NP=AM
Xét tứ giác AMPN có
AM//PN
AM=PN
Do đó: AMPN là hình bình hành
=>AP cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của MN
nên O là trung điểm của AP
=>A,O,P thẳng hàng
a) Ta dễ chứng minh MN là dường trung bình của tam giác ABC.
=> MN = 1/2 BC
Mà BC = 8 cm (gt)
Nên MN = 4 cm
b) Ta đi chứng minh MH // AN do MH là đường trung bình của tam giác ABC
Tương tự ta có: HN // AM
Từ đó suy ra tứ giác AMHN là hình bình hành do tứ giác có 2 cặp cạnh đối song song
c) Ta đi chứng minh M là trung điểm của HI do HI = 2HM và M cũng là trung điểm của AB
Nên tứ giác AIBH là hình bình hành ( tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
=> BI = AI (1)
Tương tự ta có: CF = AH (2)
Từ (1) và (2) suy ra BI = CF (đpcm)
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: BC=2MN
hay BC=6(cm)