Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta\)\(ABC \) ta có : \(\widehat{A}\) + \(\widehat{B}\) + \(\widehat{C}\) = \(180 \)o
⇒\(\widehat{B}\) + \(\widehat{C}\) =\(180 \)o - \(\widehat{A} \)
⇒\(\widehat{B} + \widehat{C} = 130\)o
Vì \(\Delta\)\(ABC\) cân tại A
⇒ \(\widehat{B}=\widehat{C} = 130\)o\(: 2 = 65\)o
*Cách khác:
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{B}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của các góc ở đáy trong ΔABC cân tại A)
\(\Leftrightarrow\widehat{B}=\dfrac{180^0-50^0}{2}=65^0\)
mà \(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)
nên \(\widehat{C}=65^0\)
Vậy: \(\widehat{B}=65^0\); \(\widehat{C}=65^0\)
Bài 1:
Vì CD và CE lần lượt là phân giác trong và phân giác ngoài của góc C nên \(CD\perp CE\)
Kẻ \(CH\perp AB\)thì \(\widehat{CED}=\widehat{HCD}\)cùng phụ với \(\widehat{EDC}\)
Ta có : \(\widehat{HCA}=90^0-\widehat{HAC}=90^0-\left[180^0-\widehat{BAC}\right]=\widehat{BAC}-90^0\)
\(\widehat{ACD}=\frac{1}{2}\widehat{ACB}=\frac{1}{2}\left[180^0-\widehat{ABC}-\widehat{BAC}\right]=90^0-\frac{1}{2}\left[\widehat{ABC}+\widehat{BAC}\right]\)
Do đó \(\widehat{HCD}=\widehat{HCA}+\widehat{ACD}=\frac{\widehat{BAC}-\widehat{ABC}}{2}\)nếu \(\widehat{BAC}>\widehat{ABC}\).
Nếu \(\widehat{BAC}< \widehat{ABC}\)thì \(\widehat{HCD}=\frac{\widehat{ABC}-\widehat{BAC}}{2}\)
Vậy \(\widehat{HCD}=\left|\frac{\widehat{BAC}-\widehat{ABC}}{2}\right|\).
2. Giả sử \(\widehat{B}>\widehat{C}\), ta có : \(\widehat{DAH}=\frac{\widehat{B}-\widehat{C}}{2}\)
Suy ra \(\widehat{B}-\widehat{C}=2\widehat{DAH}=2\cdot15^0=30^0\)
Mặt khác \(\widehat{B}+\widehat{C}=90^0\)từ đó suy ra \(\widehat{B}=60^0,\widehat{C}=30^0\)
Nếu \(\widehat{B}< \widehat{C}\)thì chứng minh tương tự,ta có \(\widehat{B}=30^0,\widehat{C}=60^0\)
P/S : Hình bài 1 chỉ mang tính chất minh họa nhé
Kẻ BD là phân giác của góc ABC và Lấy M trên BC sao cho BM=BA
=>BM=1/2BC
Xét ΔBDC có góc DBC=góc DCB
nên ΔBDC cân tại D
mà DM là trung tuyến
nên DM là đường cao
Xét ΔBAD và ΔBMC có
BA=BM
góc ABD=góc MBD
BD chung
Do đó: ΔBAD=ΔBMD
=>góc BMD=góc BAD=90 độ
=>ΔABC vuông tại A
=>góc B+góc C=90 độ
=>góc B=60 độ, góc C=30 độ