K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

Ta có \(b=AC=20\)

\(\sin\widehat{B}=\dfrac{AC}{BC}=\sin48^0\approx0,7\Leftrightarrow a=BC=\dfrac{20}{0,7}\approx28,6\)

 

6 tháng 7 2023

Gọi a, b, c, h là độ dài hai cạnh góc vuông, cạnh huyền và đường cao

Có \(c=\sqrt{a^2+b^2},ab=ch\Leftrightarrow h=\dfrac{ab}{c}\)

Có \(\left\{{}\begin{matrix}a+b=70\\c+h=74\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=70\\\sqrt{a^2+b^2}+\dfrac{ab}{\sqrt{a^2+b^2}}=74\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+b=70\\a^2+b^2+ab=74\sqrt{a^2+b^2}\end{matrix}\right.\)

PT dưới tương đương: \(\left(a+b\right)^2-ab=74\sqrt{\left(a+b\right)^2-2ab}\)

\(\Leftrightarrow ab=1200\)

Suy ra \(\left\{{}\begin{matrix}a+b=70\\ab=1200\end{matrix}\right.\), a và b là hai nghiệm của pt \(x^2-70x+1200=0\)

\(\Leftrightarrow a=30,b=40\)

Vậy độ dài các cạnh góc vuông, cạnh huyền và đường cao là 30, 40, 50, 24.

NV
7 tháng 7 2021

Kẻ đường cao BH (H thuộc AC)

Do góc A nhọn \(\Rightarrow\) H nằm giữa A và C

Ta có: \(S_{ABC}=\dfrac{1}{2}BH.AC\Leftrightarrow\dfrac{2}{5}bc=\dfrac{1}{2}BH.b\)

\(\Rightarrow BH=\dfrac{4c}{5}\)

Áp dụng Pitago cho tam giác vuông ABH:

\(AH^2=AB^2-BH^2=c^2-\left(\dfrac{4c}{5}\right)^2=\dfrac{9c^2}{25}\Rightarrow AH=\dfrac{3c}{5}\)

\(\Rightarrow CH=AC-AH=b-\dfrac{3c}{5}\)

Pitago tam giác vuông BCH:

\(BC=\sqrt{BH^2+CH^2}=\sqrt{\left(\dfrac{4c}{5}\right)^2+\left(b-\dfrac{3c}{5}\right)^2}=\sqrt{b^2-\dfrac{6}{5}bc+c^2}\)

NV
7 tháng 7 2021

undefined

31 tháng 7 2016

bạn học casio à. cần tài liệu thì ib đưa link face mình gửi nhé

31 tháng 7 2016

dùng hàm cos + tam giác dd+ pytago
nhớ tính xong gán để tính cho chính xác

11 tháng 7 2017

A B C

Gỉa sử \(\Delta ABC\) có \(AB=3AC;\widehat{A}=90^0\)

Khi đó \(S\Delta ABC=\frac{1}{2}.AB.AC=\frac{1}{2}.AB.\frac{1}{3}.AB=24\Rightarrow AB^2=144\Rightarrow AB=12\left(cm\right)\)

\(\Rightarrow AC=4\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+4^2}=4\sqrt{10}\left(cm\right)\) 

11 tháng 7 2017

Gọi cạnh góc vuông nhỏ là x (cm,x>0)

=> cạnh góc vuông lớn là 3x(cm)

Diện tích là 24 \(cm^2\)nên ta có : \(\frac{3x.x}{2}\)= 24 => x=4 (TMĐK)

=> cạnh góc vuông lớn là 12cm

Vậy số đo cạnh huyền là \(4\sqrt{10}\)cm

17 tháng 1 2016

1) ta có góc BAF+góc DAE=90 ĐỘ

     góc DAK +góc DAE=90 ĐỘ

=> góc BAF= góc DAK 

XÉT 2 TAM GIÁC TRÊN THEO TRƯỜNG HỢP G.C.G

=>tam giác ABF=tam giác DAK

==>AK=AF  => tam giác AKF cân tại A

2)XÉT TAM GIÁC VUÔNG KCF CÓ I LÀ TRUNG ĐIỂM CỦA CẠNH HUYỀN KF nên A,F,K thuộc đường tròn đường kính KF (1)

TƯƠNG TỰ VỚI TAM GIÁC VUÔNG AKF ==> A,K,F cùng thuộc đường tròn đường kính KF (2)

TỪ (1) và (2) ==> điều cần chứng minh

3)vì tam giác AKF cân tại A ==> AI là trung tuyến đồng thời là đường cao 

==> AI vuông góc với KF  

DO ĐÓ góc AIF=90 độ

tương tự câu 2 xét vào 2 tam giác vuông AIF và ABF ==>điều cần chứng minh

đợi một tí thí nữa mk giải típ mệt quá

17 tháng 1 2016

sao dài thế

 

29 tháng 7 2018

Giả sử tam giác ABC vuông tại A, có góc C = 600. AC = 25

A B C 60 25

\(cosC=cos60^0=\frac{AC}{BC}=\frac{1}{2}\)

\(\Rightarrow\)\(BC=2AC=50\)

\(tanC=tan60^0=\frac{AB}{AC}=\sqrt{3}\)

\(\Rightarrow\)\(AB=\sqrt{3}.AC=25\sqrt{3}\)

29 tháng 7 2018

Hình vẽ:

60 25 A C B

Giả sử tam giác ABC vuông tại A có góc C bằng 600,  AC bằng 25 (như hình vẽ)

cosC = cos60\(\frac{AC}{BC}\)\(\frac{1}{2}\)

=> BC = 2AC = 50

tanC = tan60\(\frac{AB}{AC}\)\(\sqrt{3}\)

=> AB = \(\sqrt{3}\).AC = 25 \(\sqrt{3}\)