K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

Gọi M là chân đg trung tuyến hạ từ B đến AC

=>M(t,\(\frac{9t-7}{5}\) )

=>C(2t-2,\(\frac{18t-19}{5}\) )

pt AH:2x+3y-7=0

Do C=BC vuông với AH =>15x-10y+6t-8=0 

Tọa độ đỉnh B là nghiệm của hệ \(\begin{cases}9x-5y-7=0\\15x-10y+6t-8=0\end{cases}\) =>B(2t+2,\(\frac{18t+11}{5}\) )

Lại có BH vuông với AC =>BH*AC=0

                                           =>t=?

2 tháng 8 2016

Mình tính được nghiệm là \(\begin{cases}B\left(3,4\right)\\c\left(-1,-2\right)\end{cases}\) 

 

22 tháng 3 2017

A B C M N E H

goi B(a; b) N( c; d)

\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)

N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)

2d = -3 +b (3)

B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)

tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)

dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0

tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE

\(\Rightarrow E\left(5;1\right)\). ​vì ptdt (BE) cung la ptdt qua (BC):

3x+5y-20 =0

tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)

26 tháng 4 2020

ai biêt

21 tháng 3 2021

undefined

a: Tọa độ trọng tâm là:

x=(1+2+0)/3=1 và y=(3+1+3)/3=7/3

c: \(d\left(A;d\right)=\dfrac{\left|1\cdot1+3\cdot\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)

31 tháng 1 2022

pleas giải giúp mk với

16 tháng 5 2016

ta có vecto HK =(-1,2) n pháp tuyến của HK (2,1) Ptdt HK : 2x+y-2=0

vì HK vuông AC nên AC có n pháp tuyến là (1,-2) qua K nên PtdtAC : x-2y+4=0

A thuộc Ac nên A(2a-4,a) . M là trung điểm AB nên B(10-2a,2-a) . B thuộc HK nên ta có 2(10-2a)+(2-a)-2=0 <=> a=4. Vây A(4,4) , B(2,-2)

vecto AB(-2,-6) nên n pháp tuyến của AB (6,-2) Ptdt AB : 3x-y-8=0

vecto AH (-3,-4) nên n pháp tuyến AH (4,-3) PtdtAH : 4x-3y-4=0

có AH vuông BC nên n pháp tuyến BC là ( 3,4) .qua B . Ptdt BC là 3x+4y+2=0

A:

loading...  loading...  loading...  loading...  loading...  loading...  

a: \(\overrightarrow{AB}=\left(-11;11\right);\overrightarrow{AC}=\left(-2;6\right)\)

Vì -11/-2<>11/6

nên A,B,C thẳng hàng

ABCD là hình bình hành

=>vecto DC=vecto AB

=>5-x=-11 và 4-y=11

=>x=16 và y=-7

b: \(\overrightarrow{BH}=\left(x+4;y-9\right)\); vecto BC=(9;-5); vecto AH=(x-7;y+2)

Theo đề, ta có: 

(x+4)/9=(y-9)/-5 và 9(x-7)+(-5)(y+2)=0

=>-5x-20=9y-81 và 9x-63-5y-10=0

=>-5x-9y=-61 và 9x-5y=73

=>x=481/53; y=92/53

c: Vì (d') vuông góc (d) nên (d'): 4x+3y+c=0

Thay x=-2 và y=3 vào (d'), ta được:

c+4*(-2)+3*3=0

=>c=-1