Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
\(a,\sin B=\dfrac{AC}{BC}=\dfrac{12}{13};\cos B=\dfrac{AB}{BC}=\dfrac{5}{13};\tan B=\dfrac{AC}{AB}=\dfrac{12}{5};\cot B=\dfrac{AB}{AC}=\dfrac{5}{12}\\ b,\text{Áp dụng HTL: }\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ \sin B=\dfrac{12}{13}\approx67^0\\ \Rightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{HAB}=90^0-\widehat{B}\approx23^0\)
cho tam giác abc vuông tại a biết ab=6cm,ac=8cm, a tính bc , b trên tia đối tia ac lấy điểm d sao cho ac=ad chứng minh tam giác bcd cân , c từ a vẽ ah vuông góc với bd tại h ak vuông góc bc tại k chứng minh tam giác bah= tam giác bka ,chứng minh tam giacs bhk cân từu đso chứng minh hk//cd , d qua điểm d kẻ đường thẳng a vuông góc vưới bd tại d qua điểm c kẻ đường thẳng b vuông góc với bc tại điểm c hai đường thẳng a và b cắt tại o chứng minh o,a,b thẳng hàng giúp mình với
cosB=(16^2+BC^2-14^2)/(2*16*BC)
=>BC^2+60=32*BC*cos40
=>BC=21,76cm
S ABC=1/2*21,76*16*sin40=111,90cm2
Đồng chí tự vẽ hình nhé.
Kẻ \(AD\perp BC=\left\{D\right\}\)
a, \(\Delta ABD\)có: \(\widehat{ADB}=90^o\)
\(\Rightarrow AD=AB.\sin B\Leftrightarrow AD=16.\sin30=8\sqrt{3}\left(cm\right)\)
\(\Delta ABD\)có: \(\widehat{ADB}=90^o\)
\(\Rightarrow AB^2=AD^2+BD^2\)(định lý Py-ta-go)
hay \(16^2=\left(8\sqrt{3}\right)^2+BD^2\)
\(BD^2=64\)
\(BD=8\left(cm\right)\)
\(\Delta ADC\)có: \(\widehat{ADC}=90^o\)
\(\Rightarrow AC^2=AD^2+CD^2\)(định lý Py-ta-go)
hay \(14^2=\left(8\sqrt{3}\right)^2+CD^2\)
\(CD^2=4\)
\(CD=2\left(cm\right)\)
Ta có: \(BC=CD+BD=2+8=10\left(cm\right)\)
b, \(S_{\Delta ABC}=\frac{AD.BC}{2}=\frac{8\sqrt{3}.10}{2}=40\sqrt{3}\left(cm^2\right)\)
Thật sự tui không biết mình có làm đúng không, sai thì nhớ bảo nhá
Ta có: BD+CD=BC
nên CD=14-8=6
Xét ΔBAC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{3}\)
hay \(AB=\dfrac{4}{3}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{9}=14^2=196\)
\(\Leftrightarrow AC^2=70.56\)
\(\Leftrightarrow AC=8.4\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{4}{3}\cdot AC=\dfrac{4}{3}\cdot8.4=11.2\left(cm\right)\)
Vẽ đường cao CH. Ta có:
\(\hept{\begin{cases}BH+AH=14\\BH^2+CH^2=225\\AH^2+CH^2=169\end{cases}\Rightarrow\hept{\begin{cases}BH+AH=14\\BH^2-AH^2=56\end{cases}\Leftrightarrow}\hept{\begin{cases}BH+AH=14\\\left(BH+AH\right)\left(BH-AH\right)=56\end{cases}\Leftrightarrow}\hept{\begin{cases}BH+AH=14\\BH-AH=4\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}BH=9\\AH=5\end{cases}\Rightarrow\hept{\begin{cases}\widehat{A}=cos^{-1}\frac{5}{13}\approx67^023'\\\widehat{B}=cos^{-1}\frac{9}{15}\approx53^08'\\\widehat{C}\approx180^0-\left(67^023'+53^08'\right)=59^029'\end{cases}}}\)