K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

Tọa độ trọng tâm của ΔABC là:

\(\left\{{}\begin{matrix}x=\dfrac{-4+2+\left(-1\right)}{3}=\dfrac{-5+2}{3}=-\dfrac{3}{3}=-1\\y=\dfrac{5+3+4}{3}=4\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:
Ta có:
\(\left\{\begin{matrix} \frac{x_A+x_B+x_C}{3}=x_G\\ \frac{y_A+y_B+y_C}{3}=y_G\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_C=3x_G-x_A-x_B\\ y_C=3y_G-y_A-y_B\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x_C=3.2-(-2)-0=8\\ y_C=3.3-0-4=5\end{matrix}\right.\)

Vậy tọa độ điểm $C$ là $(8,5)$

AH
Akai Haruma
Giáo viên
6 tháng 2 2024

Lời giải:
Gọi $G(a,b)$ là trọng tâm tam giác. Ta có:

$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$

$\Leftrightarrow (1-a, 4-b)+(2-a, -3-b)+(1-a, -2-b)=(0,0)$

$\Leftrightarrow (1-a+2-a+1-a, 4-b-3-b-2-b)=(0,0)$

$\Leftrightarrow (5-3a, -1-3b)=(0,0)$

$\Rightarrow 5-3a=0; -1-3b=0$

$\Rightarrow a=\frac{5}{3}; b=\frac{-1}{3}$

b.

Để $A,B,D$ thẳng hàng thì:

$\overrightarrow{AB}=k\overrightarrow{AD}$ với $k$ là số thực $\neq 0$

$\Leftrightarrow (1,-7)=k(-2, 3m-1)$

$\Leftrightarrow \frac{1}{-2}=\frac{-7}{3m-1}$

$\Rightarrow m=5$

NV
24 tháng 12 2020

1.

\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-\dfrac{3}{2}\\y_I=\dfrac{y_A+y_B}{2}=1\end{matrix}\right.\) \(\Rightarrow I\left(-\dfrac{3}{2};1\right)\)

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=0\\y_G=\dfrac{y_A+y_B+y_C}{3}=0\end{matrix}\right.\) \(\Rightarrow G\left(0;0\right)\)

2.

\(\left\{{}\begin{matrix}\overrightarrow{CI}=\left(-\dfrac{9}{2};3\right)\\\overrightarrow{AG}=\left(-2;-3\right)\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}CI=\sqrt{\left(-\dfrac{9}{2}\right)^2+3^2}=\dfrac{3\sqrt{13}}{2}\\AG=\sqrt{\left(-2\right)^2+\left(-3\right)^2}=\sqrt{13}\end{matrix}\right.\)

NV
24 tháng 12 2020

3.

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-7;-4\right)\\\overrightarrow{DC}=\left(3-x;-2-y\right)\end{matrix}\right.\)

\(ABCD\) là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}-7=3-x\\-4=-2-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=10\\y=2\end{matrix}\right.\) 

\(\Rightarrow D\left(10;2\right)\)

4. Gọi \(H\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{CH}=\left(x-3;y+2\right)\\\overrightarrow{AH}=\left(x-2;y-3\right)\\\overrightarrow{BC}=\left(8;-1\right)\end{matrix}\right.\)

H là trực tâm \(\Leftrightarrow\left\{{}\begin{matrix}AH\perp BC\\CH\perp AB\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{CH}.\overrightarrow{AB}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8\left(x-2\right)-1\left(y-3\right)=0\\-7\left(x-3\right)-4\left(y+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8x-y=13\\-7x-4y=-13\end{matrix}\right.\) \(\Rightarrow H\left(\dfrac{5}{3};\dfrac{1}{3}\right)\)

31 tháng 3 2016

Từ giả thiết suy ra \(\overrightarrow{AB}=\left(-2;2\right);\overrightarrow{BC}=\left(4;-3\right)\)

Gọi H(x;y) là trực tâm của tam giác ABC thế thì \(\overrightarrow{CH}=\left(x-2;y\right),\overrightarrow{AH}=\left(x;y-1\right)\)

Ta có H là trực tâm của tam giac ABC khi và chỉ khi

\(\begin{cases}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{CH}.\overrightarrow{AB}=0\end{cases}\)\(\Leftrightarrow\)    \(\begin{cases}4x-3\left(y-1\right)=0\\-2\left(x-2\right)+2y=0\end{cases}\)

                         \(\Leftrightarrow\begin{cases}x=-9\\y=-11\end{cases}\)

Vậy trực tâm của tam giác ABC là H(-9;-11)

Để tìm  tọa độ của tâm I đường tròn ngoại tiếp tam giác ABC ta có thể sử dụng công thức khoảng cách IA=IB=IC hoặc sử dụng đẳng thức Vecto \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{IH}\)

Hoặc cũng có thể làm như sau :

Gọi M và N theo thứ tự là trung điểm của AB và BC. Khi đó M(-1;2) và \(N\left(0;\frac{3}{2}\right)\)

Gọi I(x;y) là tâm đường tròn ngoại tiếp của tam giác. Khi đó :

\(\begin{cases}\overrightarrow{IM}.\overrightarrow{AB}=0\\\overrightarrow{IN}.\overrightarrow{BC}=0\end{cases}\)

\(\Leftrightarrow\begin{cases}-2\left(-1-x\right)+2\left(2-y\right)=0\\4\left(-x\right)-3\left(\frac{3}{2}-y\right)=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=\frac{9}{2}\\y=\frac{15}{2}\end{cases}\)

Vậy tâm đường tròn ngoại tiếp của tam giác ABC là \(I\left(\frac{9}{2};\frac{15}{2}\right)\)

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Lời giải:

Gọi \(B(a,b)\)\(C(c,d)\)

Ta có \(\overrightarrow {HA}=(0,4)\perp \overrightarrow{BC}=(c-a,d-b)\Rightarrow 4(d-b)=0\rightarrow b=d\)

Thay \(d=b\):

\(\overrightarrow{HB}=(a-1,b-2)\perp \overrightarrow{AC}=(c-1,b-6)\)

\(\Rightarrow (a-1)(c-1)+(b-2)(b-6)=0\)

Lại có \(IA^2=IB^2=IC^2\leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b-3\right)^2=10\\\left(c-2\right)^2+\left(b-3\right)^2=10\end{matrix}\right.\)

\(\Rightarrow (a-2)^2=(c-2)^2\rightarrow a+c=4\) ( \(a\neq c\) )

Ta thu được

\(\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b-3\right)^2=10\\\left(3-a\right)\left(a-1\right)+\left(b-2\right)\left(b-6\right)=0\end{matrix}\right.\)

\(\left\{\begin{matrix} a^2+b^2-4a-6b+3=0\\ -a^2+4a+b^2-8b+9=0\end{matrix}\right.\Rightarrow 2b^2-14b+12=0\rightarrow b=1\)

hoặc \(b=6\)

Thay vào PT suy ra \(\left[{}\begin{matrix}-a^2+4a+2=0\\-a^2+4a-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2+\sqrt{6}\\a=1;a=3\end{matrix}\right.\)

Vậy.....

22 tháng 3 2017

cj em nói cj này giỏi thiệt còn em k bit j