Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\pi R^2=36\pi\Rightarrow R=6\)
Phương trình đường tròn:
\(\left(x+2\right)^2+\left(y-0\right)^2=36\)
\(\Leftrightarrow x^2+y^2+4x-32=0\)
Số phần tử của tập hợp A = { k2 + 1 | k εℤ, |k| \(\le\)2} là:
A. 1
B. 2
C. 3
D. 5
ta có: (a-b)2 \(\ge\) 0
=> a2 + b2 - 2ab \(\ge\) 0
=> a2 +b2 - ab \(\ge\) 0
=> a2 +b2 \(\ge\) ab
=> (a+ b)(a2 +b2 - ab) \(\le\) ab(a+b) (vì a\(\le0;\) b\(\le0\) nên a+b \(\le\)0)
=> a3 + b3 \(\le\) ab(a+b)
=>đpcm.
a) Ta có: sin 1050 = sin(1800-1050) => sin 1050= sin 750
b) cos1700= -cos(1800-1700) => cos1700 = -cos100
c) cos1220 = -cos(1800-1220) => cos1220 = -cos580
a/ - Với \(x\ge\frac{3}{5}\) BPT tương đương:
\(2x^2-5x+3< 0\Leftrightarrow1< x< \frac{3}{2}\)
- Với \(x< \frac{3}{5}\) BPT tương đương:
\(x^2+5x-3< 0\Leftrightarrow\frac{-5-\sqrt{37}}{2}< x< \frac{-5+\sqrt{37}}{2}\)
Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}1< x< \frac{3}{2}\\\frac{-5-\sqrt{37}}{2}< x< \frac{-5+\sqrt{37}}{2}\end{matrix}\right.\)
b/ -Với \(x< 8\) BPT vô nghiệm
- Với \(x\ge8\) hai vế ko âm, bình phương:
\(\left(x-8\right)^2>\left(x^2+3x-4\right)^2\)
\(\Leftrightarrow\left(x^2+3x-4\right)^2-\left(x-8\right)^2< 0\)
\(\Leftrightarrow\left(x^2+4x-12\right)\left(x^2-2x+4\right)< 0\)
\(\Leftrightarrow x^2+4x-12< 0\Rightarrow-6< x< 2\) (ktm)
Vậy BPT đã cho vô nghiệm
a) Tâm I(2 ; -4), R = 5
b) Đường tròn có phương trình: (x – 2 )2 + (y + 4)2 = 25
Thế tọa độ A(-1 ; 0) vào vế trái, ta có :
(-1- 2 )2 + (0 + 4)2 = 32 + 42 = 25
Vậy A(-1 ;0) là điểm thuộc đường tròn.
Áp dụng công thức tiếp tuyến (Xem sgk)
Ta được pt tiếp tuyến với đường tròn tai A là:
(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25 <=> 3x – 4y + 3 = 0
Chú ý:
1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:
Vectơ = (-3; 4)
Tiếp tuyến đi qua A(-1; 0) và nhận làm một vectơ pháp tuyến có phương trình:
-3(x + 1) + 4(y – 0) = 0 ,<=> 3x – 4y + 3 = 0
Chọn C.
+ Tính góc A
Áp dụng định lí cosin trong tam giác ta có:
+Tính góc B: