Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nghen
Vì AD là phân giác của \(\widehat{BAC}\) nên \(\widehat{BAD}=\widehat{DAC}=30\) độ
Ta có SABD=\(\frac{1}{2}\times AB\times AD\times\sin\widehat{BAD}\) (1)
SADC=\(\frac{1}{2}\times AD\times AC\times\sin\widehat{DAC}\) (2)
SABC=\(\frac{1}{2}\times AB\times AC\times\sin\widehat{BAC}\) (3)
từ (1),(2) và (3) , ta suy ra:\(\frac{1}{2}AD\times\left(AB+AC\right)\times\sin30=AB\times AC\times\sin60\)
\(\Rightarrow AD\times\frac{1}{2}\times12\sqrt{3}=96\times\frac{\sqrt{3}}{2}\)\(\Rightarrow AD=8\)
Vậy AD=8(đvd)
a) ∆DEI = ∆DFI có:
DI là cạnh chung
DE = DF ( ∆DEF cân)
IE = IF (DI là trung tuyến)
=> ∆DEI = ∆DFI (c.c.c)
D E I F
b) Vì ∆DEI = ∆DFI => \(DIE=DIF\)
mà \(DIE+DIF=180^0\) (kè bù)
nên \(DIE=DIF=90^0\)
c) I là trung điểm của EF nên IE = IF = 5cm
∆DEI vuông tại I => DI2 = DE2 – EI2 (định lí pytago)
=> DI2 = 132 – 52 = 144
=> DI = 12
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Gọi I là giao điểm của phân giác góc B và C
Xét tam giác HAC vuông tại H và tam giác ABC vuông tại A có góc C chung => góc HAC = góc ABC
Ta có: góc ADC = góc DAB + góc DBA = góc DAH + góc HAC ( vì góc DAB = DAH ; góc HAC=DBA)
=>góc ADC= góc DAH + góc HAC = góc DAC
=> tam giác CAD cân tại C => CA=CD
tam giác CID = tam giác CIA (c.g.c) => IA = ID (1)
CM tương tự, ta có IA = IE (2)
Từ (1) và (2) suy ra IA = IE = ID => I là giao điểm 3 đường trung trực của tam giác ADE
=> đpcm
Ta có :
3abc = abc x 5
3000 + abc = abc x 5
3000 = abc x 4
abc = 3000 : 4
abc = 750
Bài làm
3abc = abc x5
3000 + abc = abc x 5
3000 = abc x4
abc = 3000 : 4
abc = 750
Vậy 3abc là 3750
Đáp án B