Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ phân giác AD, BK vuông góc với AD.
\(\sin\frac{\widehat{A}}{2}=\sin BAD\)
Xét tam giác AKB vuông tại K, ta có:
\(\sin BAD=\frac{BK}{AK}\left(1\right)\)
Xét tam giác BKD vuông tại K, ta có:
\(BK\Leftarrow BD\)thay vào (1)
\(\sin BAD\Leftarrow\frac{BD}{AB}\left(2\right)\)
Lại có: \(\frac{BD}{CD}=\frac{AB}{AC}\)
\(\Rightarrow\frac{BD}{\left(BD+CD\right)}=\frac{AB}{\left(AB+AC\right)}\)
\(\Rightarrow\frac{BD}{BC}=\frac{AB}{\left(AB+AC\right)}\)
\(\Rightarrow BD=\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\)thay vào (2)
\(\sin BAD\Leftarrow\frac{\left[\frac{\left(AB.BC\right)}{\left(AB+AC\right)}\right]}{AB}\)
\(=\frac{BC}{\left(AB+AC\right)}\left(ĐPCM\right)\)
Từ A vẽ AD _|_ BC ,AG là trung tuyến cắt BC tại E\(\Rightarrow\)\(\hept{\begin{cases}AD\le AE\Rightarrow\frac{1}{AD}\ge\frac{1}{AE}\\1.2GE=BC\left(do\Delta BGCvuongcoElatrungdiem\right)\end{cases}}\)
cotB=\(\frac{BD}{AD}\)cotC=\(\frac{CD}{AD}\)\(\Rightarrow\)2.cotB + cotC=\(\frac{BC}{AD}\)
3.G là trực tâm nên 3GE=AE\(\Rightarrow\)\(\frac{1}{AD}\ge\frac{1}{3GE}\)
từ 1, 2 và 3 \(\Rightarrow\)cotB + cotC=\(\frac{BC}{AD}\ge\frac{2GE}{3GE}=\frac{2}{3}\)
Kẽ phân giác AD của tam giác ABC, \(AD=l\)
Ta có:
\(S_{ABC}=S_{ABD}+S_{ACD}=\frac{c.l.sin\frac{A}{2}}{2}+\frac{b.l.sin\frac{A}{2}}{2}=\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\left(1\right)\)
Ta lại có:
\(\frac{a.l}{2}\ge\frac{a.h_a}{2}=S_{ABC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a.l}{2}\ge\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\)
\(\Leftrightarrow sin\frac{A}{2}\le\frac{a}{b+c}\le\frac{a}{2\sqrt{bc}}\)