K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

A A A B B B C C C D D D E E E N N N M M M P P P Q Q Q

a) Ta có : \(ED=\frac{BC}{2}=\frac{4}{2}=2\left(cm\right)\)

MN là đường trung bình của hình thang BEDC nên ta có :

\(MN=\frac{ED+BC}{2}=\frac{2+4}{2}=3\left(cm\right)\)

b) \(\Delta BED\)có BM = ME(vì M là trung điểm của BE) , mà MP // ED nên BP = PD . Do đó \(MP=\frac{ED}{2}=\frac{2}{2}=1\left(cm\right)\)

\(\Delta\)CED có NC = ND(vì N là trung điểm của CD) , mà NQ // ED nên CQ = CE . Do đó \(NQ=\frac{ED}{2}=\frac{2}{2}=1\left(cm\right)\)

Lại có : PQ = MN - MP - NQ = 3 - 1 - 1 = 1(cm)

Vậy MP = NQ = PQ = 1cm

3 tháng 8 2021

TÍNH ĐỘ DÀI ED thì sao ạ

 

25 tháng 6 2017

Bạn tự vẽ hình nha

a) Vì D,E là trung điểm của AC và AB nên ED là đường trung bình của tam giác ABC.

Suy ra ED = \(\frac{BC}{2}\)\(\frac{4}{2}\)= 2 (cm)

Tứ giác EDCB có ED // BC ( Vì ED là đường trung bình của tam giác ABC) nên EDCB là hình thang.

Vì M, N là trung điểm của EB và CD nên MN là đường trung bình của hình thang EDCB

suy ra MN = \(\frac{ED+BC}{2}\)\(\frac{2+4}{2}\)=3 (cm).

Vậy MN =3 (cm)

b) Ta có MN// ED ( MN là đương tb củahình thang EDCB) nên MP//ED , QN//ED 

Xét tg EBD có MP//ED (cmt)

                     MB =ME (gt)

Suy ra P là trung điểm của BD ,nên MP là đương tb của tg EBD nên MP= \(\frac{ED}{2}\)=\(\frac{2}{2}\)= 1(cm).

Chứng minh tương tự với tg ECD cũng có QN = 1(cm) 

Ta có MN = MP + PQ +QN

         3  = 1+PQ +1

        QN =1 (cm) 

Nên MP=PQ=QN.(đpcm)

Có nhìu chỗ thiếu xót mong mấy bạn thông cảm.

11 tháng 9 2017

Nếu c/m tứ giác MEDN là hình thang thì s bn ơi..................?????

a: Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

DO đó: ED là đường trung bình

=>ED//BC và ED=BC/2=2(cm)

Xét hình thang BEDC có

M là trung điểm của BE

N là trung điểm của DC

Do đó: MN là đường trung bình

=>MN//ED//BC và \(MN=\dfrac{ED+BC}{2}=\dfrac{2+4}{2}=3\left(cm\right)\)

b: Xét ΔBED có MP//ED

 nên MP/ED=BM/BE

=>MP/2=1/2

=>MP=1(cm)

Xét ΔCED có NQ//ED

nên NQ/ED=CN/CD
=>NQ=1(cm)

MP+PQ+QN=MN

nên PQ=1(cm)

=>MP=PQ=QN

31 tháng 8 2017

Giải

Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\)   là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì 

\(MI=KN=\frac{DE}{2}\left(1\right)\)

\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)

\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)

\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)

12 tháng 9 2017

[​IMG]
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha

a: Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó; ED là đường trung bình

=>ED//BC và \(ED=\dfrac{BC}{2}=\dfrac{4}{2}=2\left(cm\right)\)

Xét hình thang EDCB có 

M là trung điểm của EB

N là trung điểm của DC

Do đó: MN là đường trung bình

=>MN//ED//BC và \(MN=\dfrac{ED+BC}{2}=\dfrac{2+4}{2}=3\left(cm\right)\)

b: Xét ΔBED có MP//ED

nên MP/ED=BM/BE=1/2

=>MP=1(cm)

Xét ΔCED có QN//ED
nên QN/ED=CN/CD=1/2

=>QN=1(cm)

MP+PQ+QN=MN

nên PQ=MN-MP-QN=1(cm)

=>MP=PQ=QN