K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2022

Xét tam giác ABC có 

AM là phân giác 

BM = MC => AM là trung tuyến 

Vậy tam giác ABC cân tại A => AB = AC 

15 tháng 2 2022

bằng nhau theo trường hợp gì vậy  bạn

11 tháng 3 2023

a) Xét hai tam giác vuông: \(\Delta AMB\) và \(\Delta HMB\) có:

BM là cạnh chung

\(\widehat{ABM}=\widehat{HBM}\) (do BM là phân giác của \(\widehat{ABC}\))

\(\Rightarrow\Delta AMB=\Delta HMB\) (cạnh huyền-góc nhọn)

b) Do \(\Delta AMB=\Delta HMB\) (cmt)

\(\Rightarrow AM=HM\) (hai cạnh tương ứng)

c) \(\Delta MHC\) vuông tại H

\(\Rightarrow MC\) là cạnh huyền nên là cạnh lớn nhất

\(\Rightarrow HM< MC\)

Lại có HM = AM (cmt)

\(\Rightarrow AM< MC\)

13 tháng 3 2019

c. Do tam giác MKC vuông tại K nên MK < MC (0.5 điểm)

Mà MA = MK ⇒ MA < MC (0.5 điểm)

22 tháng 11 2018

A B C M 1 2 1 2

1.Xét tam giác AMB và tam giác AMC có: 

\(AB=AC\);\(AM:\) (cạnh chung)

Do đó \(\Delta AMB=\Delta AMC\)(cạnh huyền-cạnh góc vuông)

2. ​\(\Delta AMB=\Delta AMC\Rightarrow\widehat{A_1}=\widehat{A_2}\) (hai góc tương ứng) 

Suy ra AM là tia phân giác của góc A

3. Chứng minh tương tự.

14 tháng 12 2021

A )Ta có tam giác ABC cân tại A 

=> ˆABC=ˆACBABC^=ACB^

Và AB = AC

Xét hai tam giác vuông BCK và CBH ta có :

BC chung

ˆKBC=ˆBCHKBC^=BCH^

=>BCK = CBH (cạnh huyền - góc nhọn )

=>BH = CK (đpcm)

B) ta có BCK = CBH

=> ˆHBC=ˆKCBHBC^=KCB^

=> ˆABH=ˆACKABH^=ACK^

=> tam giác OBC cân tại O

=> BO = CO

Xét tam giác ABO và tam giác ACO 

AB = AC

BO = CO (cmt)

ˆABH=ˆACKABH^=ACK^

=> ABO=ACO (c-g-c)

=> ˆBAO=ˆCAOBAO^=CAO^

=> AO là phân giác góc ABC (đpcm)

C) ta có

AI là phân giác góc ABC 

Mà tam giác ABC cân tại A

=> AI vuông góc với cạnh BC (đpcm)

22 tháng 4 2017

mình cũng trùng bài này nhưng ko pít làm huhu

22 tháng 4 2017

nhớ tk cho ming nha 

A C B M H N

1, Xét tam giác ABC có :

\(BC^2=AC^2+AB^2\)

\(\Leftrightarrow BC^2=4^2+3^2\)

\(\Leftrightarrow BC^2=25\)

\(\Leftrightarrow BC=5\left(cm\right)\)

2,Ta có :\(\widehat{BMA}+\widehat{MBA}=90^O\)

\(\widehat{BMH}+\widehat{MBH}=90^O\)

MÀ \(\widehat{ABM}=\widehat{HBM}\)

Nên \(\widehat{BMA}=\widehat{BMH}\)

Xét tam giác ABM và tam giác HBM có :

\(\widehat{ABM}=\widehat{HBM}\left(gt\right)\)

\(BMchung\)

\(\widehat{BMA}=\widehat{BMH}\)

\(\Rightarrow\Delta BAM=\Delta BHM\left(c.g.c\right)\)

3,Vì \(\Delta BAM=\Delta BHM\Rightarrow AM=MH\left(1\right)\)

Xét \(\Delta HMC\)có :

\(\widehat{MHC}=90^0\)

Suy ra :MC>MH(2)

Từ (1) và(2):AM<MC

4,Ta có :\(\widehat{AMH}+\widehat{HMC}=180^0\left(1\right)\)

Xét tam giác NMA và tam giác CMH có:

\(HC=NA\)

\(\widehat{NAM}=\widehat{CHM}\)

\(MA=MH\left(\Delta BAM=\Delta BHM\right)\)

\(\Rightarrow\Delta NMA=\Delta CMH\left(c.g.c\right)\)

\(\Rightarrow\widehat{NMA}=\widehat{CMH}\)(2)

Từ (1) và(2) : => N,M,H thẳng hàng

d: AC^2+HB^2

=AC^2+HB^2

AM^2+KC^2=AB^2+CH^2

AB^2-HB^2=AH^2

AC^2-CH^2=AH^2

=>AB^2-HB^2=AC^2-CH^2

=>AB^2+CH^2=AC^2+HB^2

=>AC^2+HB^2=AM^2+KC^2

18 tháng 12 2021

a: Xét ΔABH và ΔMBH có 

BA=BM

\(\widehat{ABH}=\widehat{MBH}\)

BH chung

Do đó: ΔABH=ΔMBH