\(AD^2=DB.DC-AB.AC\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

a) Xét tam giác BAD và tam giác MCD có:

góc BAD = MCD (gt)

góc ADB = CDM (2 góc đối đỉnh)

=> 2 tam giác trên đồng dạng => AB/CM = DB/DM => AB.DM = DB.CM

b) Tam giác BAD đồng dạng vói MCD (cmt) => góc ABD = CMD

Xét tam giác ABD và AMC có: góc BAD = MAC (gt)

                                            góc ABD = ACM (cmt)

=> 2 tam giác trên đồng dạng

Còn ý d bạn dùng định lý Ceva nha.


A B c D M

11 tháng 3 2017

chủ yếu là ý c thôi

27 tháng 3 2016

Trên tia AD lấy điểm E sao cho ^BEA = ^BCA.

 Khi đó ^BED = ^ACD và ^BDE = ^ADC nên hai tam giác BDE và ADC đồng dạng

 suy ra BD/AD = DE/DC

 suy ra AD.DE = DB.DC (1). 

Gọi F là điểm đối xứng với C qua đường thẳng AD

vì AD là phân giác ^BAC nên F thuộc AB,

 từ tính chất đối xứng suy ra ^DFA = ^DCA và AF = AC,

 vì ^DCA = ^BCA = ^BEA nên ^DFA = ^BEA,

 cùng với ^A chung nên hai tam giác DFA và BEA đồng dạng,

 suy ra AD/AB = AF/AE = AC/AE, suy ra AD.AE = AB.AC (2). 

Từ (2) và (1) theo vế thì có AD.(AE - DE) = AB.AC - DB.DC, suy ra AD^2 = AB.AC - DB.DC. 

16 tháng 4 2018
cho hỏi bài này và chứng minh theo tính chất của BĐT cho tam giác ABC CD là giân giác của tam giác cm: CD^2
21 tháng 5 2016

A B C I D

a.Xét tgiac ADB và tgiac ACI có:

góc BAD = góc IAC(gt)

góc BDA= góc ICA(gt)

Vậy tgiac ADB đồng dạng với tgiac ACI(g.g)

=> góc ABD = góc AIC => góc ABD = góc DIC 

b.xét tgiac ADB và tgiac CDI có:

góc ADB= góc CDI(đối đỉnh)

góc ABD= góc CID(cmt)

vậy tgiac ADB đồng dạng với tgiac CDI(g.g)

 

21 tháng 5 2016

c.theo câu a tgiac ADB đồng dạng với tgiac ACI nên ta có:

\(\frac{AD}{AC}\)=\(\frac{AB}{AI}\)=> AB.AC=AD.AI(1)

theo câu b ta lại có tgiac ADB đồng dạng với tgiac CDI nên ta có:

\(\frac{BD}{DI}\)=\(\frac{AD}{CD}\)=> BD.CD=DI.AD(2)

TỪ (1) VÀ (2) ta có:

AB.AC-DB.DC=AD.AI-DI.AD=AD.(AI-DI)=AD.AD=\(AD^2\)(ĐPCM)

29 tháng 5 2021

Trên cùng một nửa mặt phẳng bờ \(BC\)không chứa \(A\)lấy tia \(Cx\)sao cho \(\widehat{BAD}=\widehat{BCx}\).

Kéo dài \(AD\)cắt \(Cx\)tại \(E\).

Xét \(\Delta DAB\)và \(\Delta DCE\)có:

\(\widehat{ADB}=\widehat{CDE}\)(vì đối đỉnh).

\(\widehat{BAD}=\widehat{BCE}\)(hình vẽ trên).

\(\Rightarrow\Delta DAB~\Delta DCE\left(g.g\right)\).

\(\Rightarrow\widehat{ABD}=\widehat{CED}\)(2 góc tương ứng).

\(\Rightarrow\widehat{ABD}=\widehat{CEA}\)

Và \(\frac{AD}{CD}=\frac{DB}{DE}\)(tỉ số đồng dạng).

\(\Rightarrow AD.DE=BD.CD\)\(\left(1\right)\).
Xét \(\Delta BAD\)và \(\Delta EAC\)có:

\(\widehat{BAD}=\widehat{EAC}\)(giả thiết).

\(\widehat{ABD}=\widehat{AEC}\)(chứng minh trên).

\(\Rightarrow\Delta BAD~\Delta EAC\left(g.g\right)\).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{AE}\)(tỉ số đồng dạng).

\(\Rightarrow AD.AE=AB.AC\)\(\left(2\right)\).

Từ \(\left(1\right)\)và \(\left(2\right)\).

\(\Rightarrow AD.AE-AD.DE=AB.AC-BD.CD\).

\(\Rightarrow AD\left(AE-DE\right)=AB.AC-BD.CD\).

\(\Rightarrow AD.AD=AB.AC-BD.CD\).

\(\Rightarrow AD^2=AB.AC-BD.CD\)(điều phải chứng minh).

29 tháng 5 2021

A B C D E x