Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
tha khảo
vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1)
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4
=>p^2-1 chia hết cho 8 (2)
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
(Tương tự thế này nha )
Ta có : HCKˆ=HBCˆHCK^=HBC^ ( cùng phụ với BKCˆBKC^ ) ( 1 )
HCBˆ+HBCˆ=900HCB^+HBC^=900 ( 2 góc nhọn trong tam giác vuông )
BCAˆ+CBAˆ=900BCA^+CBA^=900 ( 2 góc nhọn trong tam giác vuông )
Nên : HCBˆ+HBCˆ+BCAˆ+CBAˆ=900+900=1800HCB^+HBC^+BCA^+CBA^=900+900=1800
Hay : HCAˆ+HBAˆ=1800HCA^+HBA^=1800
mà : HBxˆ+HBAˆ=1800HBx^+HBA^=1800 ( hai góc kề bù )
Do đó : HCAˆ=HBxˆ(2)HCA^=HBx^(2)
mà : HBCˆ=HBxˆHBC^=HBx^ ( do By là tia phân giác ) ( 3 )
Từ ( 1 ) ( 2 ) ( 3 ) Suy ra : HCKˆ=HCAˆ(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
có 3 bài tham khảo
câu hỏi
1) cho tam giác ABC(AB<AC). từ trung điểm M của BC kẻ đường vuông góc với tia phân giác góc A cắt AB, AC và tia phân giác góc A lần lượt tại D,E,H. Chứng minh BD=CM.
2) cho tam giác ABC vẽ BH vuông góc AC. Gọi M là trung điểm AC biết góc ABH= góc HBM = góc MBC. tính các góc của tam giác ABC
3) cho tam giác ABC, góc B =60 độ. hai tia phân giác AD và CE của tam giác ABC cắt nhau tại I. chứng minh IE=ID
bài làm
Vì nếu BD = CM có nghĩa BD = BM ( Vì M là trung điểm của BC)
--> Tam giác BDM phải cân tại B
--> góc BDM = góc BMD (1)
Xét tam giác ADE có đường cao AH vừa là phân giác nên là tam giác cân tại A.
--> góc ADE = góc AED (2)
từ (1) và (2) --> góc BMD = góc AED
nên điều này là vô lý vì từ điểm C kẻ được 2 đường thẳng song song là CB và AC .
Bài 2:
Ta có được tam giác ABM cân tại B (vì có AH vừa là đường cao vừa là phân giác )
--> AH = HM = 1/2 AM = 1/2 MC.
Xét tam giác BCH có BM là phân giác góc B nên MH/MC = BH/BC = 1/2
mà góc BHC = 1 vuông nên suy ra HBC = 60 độ, góc C = 30 độ.
từ đó suy ra tam giác ABC có góc B = 90, C = 30 và A = 60 độ.
Bài 3.
Dễ dàng c/m được góc EID = 120 độ
--> tứ giác BDIE nội tiếp được.
--> góc IED = IBD và góc IDE = góc IBE (hai góc nội tiếp cùng chắn 1 cung)
mà góc EIB = góc IBD (T/c ba đường phân giác của tam giác)
--> góc IED = góc IDE
--> tam giác IED cân tại I --> IE = ID
đề giống như trên nhưng câu hỏi của mình khác bạn nào giúp mình nha
a,Tính góc AIC
b,Tính độ dài cạnh AK biết PK=6cm,AH=4cm
c,CM tam giác IDE cân