Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tham khảo ở đây nè:https://olm.vn/hoi-dap/detail/86099364413.html?pos=177998413317
cứ cho mik vs bạn ấy m người m k là ok
a) Gọi I là giao điểm của DE và AH
Vì D,E thứ tự là trung điểm của AB,AC nên DE là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DE//BC\)
Lại có: \(AH\perp BC\)nên \(DE\perp AH\)(1)
Ta có: \(\hept{\begin{cases}DI//BH\\AD=BD\left(gt\right)\end{cases}}\)nên I là trung điểm của AH (2)
Từ (1) và (2) suy ra DE là đường trung trực của AH (đpcm)
b) E,K thứ tự là trung điểm của AC,BC nên EK cũng là đường trung bình của \(\Delta ABC\)
\(\Rightarrow EK=\frac{1}{2}AB\)hay \(EK=AD\)(Vì D là trung điểm của AB)
Vì D thuộc đường trung trực của AH nên AD = DH (t/c điểm thuộc đường trung trực)
Do đó: DH = EK
Lại có: \(HK// DE\)nên tứ giác DEHK là hình thang cân (đpcm)
a: Xét ΔABC có
M là trung điểm của BA
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
=>MN=BE và MN//BE
=>BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên HM=AM
=>M nằm trên đường trung trực của AH(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AC/2=AN
=>N nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra MN là đường trung trực của AH
Xét ΔABC có
M là trung điểm của AB
E là trung điểm của BC
Do đó: ME là đường trung bình
=>ME=AC/2
mà HN=AC/2
nên ME=HN
Xét tứ giác MNEH có MN//EH
nên MNEH là hình thang
mà ME=NH
nên MNEH là hình thang cân
Bài 1 :
B A C H K E D M N
a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)
Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)
=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)
Từ (1) và (2) suy ra MNKH là hình thang cân.
b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3)
Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD
=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)
=> BE = CD (4)
Từ (3) và (4) suy ra BCDE là hình thang cân.
A B C D E N M P
Bài 2 :
a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)
Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\); \(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)
\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)
b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC
=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P
Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.
a)gọi giao điểm của đoạn thẳng AH và DE là O
xét tam giác ABC có
D là trung điểm của AC
E là trung điểm của AC=> DE là đường trung bình của tam giác ABC=> DE// CB (t/c đường trung bình tam giác)
=>AH vuông góc DE( AH vuông CB mà DE//CB)
mặt khác ta lại có O là giao điểm của AH và DE=> D,O,E thẳng hàng
=> o cũng là trung điểm của AH hay ta nói đoạn thẳng DE là đường trung trực của AH
b) ta có DE//CB (cmt) mà K,H thuộc CB
=> DE//KH hay tứ giác DEKH là hình thang
xét hình thang DEKH có :
E là trung điểm của AB
K là trung điểm của CB=> KE là đường trung bình của tam giác BAC
=> KE//AC=1/2 AC (1)
DH là đường trung tuyến ứng với cạnh huyền của tam giác vuông ACH (D là trung điểm của AC, AD=DC)
=> DH=1/2 AC (2)
từ (1) và (2)=> KE=DH =(AC) mà KE và DH lại là 2 đường chéo của hình thang DEHK
=> hình thang DEHK là hình thang cân