\(\ne\)AC), tia Ax đi qua trung điểm M của BC.Kẻ BE và CF vuông góc...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Kí hiệu tam giác là t/g nhé

a) Có: BE _|_ Ax (gt)

CF _|_ Ax (gt)

Suy ra BE // CF (1)

Xét t/g EMB vuông tại E và t/g FMC vuông tại F có:

BM = CM (gt)

EMB = FMC ( đối đỉnh)

Do đó, t/g EMB = t/g FMC ( cạnh huyền và góc nhọn kề)

=> BE = CF (2 cạnh tương ứng) (2)

ME = MF (2 cạnh tương ứng) (3)

(1); (2) và (3) là đpcm

b) Xét t/g EMC và t/g FMB có:

EM = MF (câu a)

EMC = FMB ( đối đỉnh)

CM = BM (gt)

Do đó, t/g EMC = t/g FMB (c.g.c)

=> CE = BF (2 cạnh tương ứng) (4)

ECM = FBM (2 góc tương ứng)

Mà ECM và FBM là 2 góc so le trong

Nên EC // BF (5)

(4) và (5) là đpcm

 

 

20 tháng 4 2017

Hai tam giác vuông BME, CMF có:

BM=MC(gt)

ˆBMEBME^=ˆCMFCMF^(đối đỉnh)

Nên ∆BME=∆CMF(cạnh huyền- góc nhọn).

Suy ra BE=CF.



21 tháng 4 2017

Em phải vẽ hình nhé !

16 tháng 11 2016

Ta có hình vẽ:

x A B C M E F

Δ CFM có: CFM + FMC + MCF = 180o

Δ EMB có: EMB + MBE + BEM = 180o

Mà CFM = MEB = 90o

FMC = BME (đối đỉnh) nên MCF = MBE

Xét Δ MCF và Δ MBE có:

MCF = MBE (cmt)

CM = BM (gt)

FMC = EMB (đối đỉnh)

Do đó, Δ MCF = Δ MBE (c.g.c)

=> CF = BE (2 cạnh tương ứng)

15 tháng 11 2017

g-c-g mà bạn

14 tháng 12 2018

Lời giải:

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

Hai tam giác vuông BME và CMF có

Giải bài 40 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔBME = ΔCMF (cạnh huyền – góc nhọn)

⇒ BE = CF (hai cạnh tương ứng).

Kiến thức áp dụng

+ Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Giải bài 38 trang 124 Toán 7 Tập 1 | Giải bài tập Toán 7

      ΔABC vuông tại A và ΔDEF vuông tại D có:

      BC = EF

      ∠B = ∠E

      ⇒ΔABC = ΔDEF

29 tháng 1 2022

a, Ta có: BE vuông Ax(1)

              CF vuông Ax(2)

Từ (1) và (2) => BE//CF

b,Tam giác BEM = Tam giác CFM(g.c.g)

=>BE=CF(các cạnh tương ứng)

Chứng minh tương tự ta đươc: Tam giác CME = Tam giác BMF (c.g.c)

=> CE=BF(các cạnh tương ứng)

c,Nếu BE=CE

thì tam giác BEC cân tại E

mà E thuộc AM

AM là đg trug tuyến 

thì khi cân cũng sẽ là đg cao

nên khi tam giác ABC cân tại A THÌ BE=CE

29 tháng 1 2022

lên vietjack có cách giải chi tiết 

18 tháng 12 2020

Giải thích các bước giải:

 BE ⊥ AM,   CF⊥AM 

=> BE // CF 

 a) Xét Δ vuông BME và Δ vuông CMF có:

BM = MC ( M là tđ BC )

B1 = C1 ( so le trong )

=> Δ ... = Δ ... ( ch - gn)

b) ME = MF ( cạnh tương ứng )

c) Xét Δ MEC và Δ MFB có:

 M1 = M2 (đối đỉnh)

ME = MF (cmt)

BM = CM (cmt)

=> Δ ... = Δ ... ( cgc )

=> CE = BF

d)

Ta có: C2 = B2 (Δ MEC = Δ MFB)

Mà 2 góc này ở vị trí so le trong 

=> CE // BF

25 tháng 3 2018

19 tháng 1 2022

câu  sai nha bạn người ta bảo điều kiện của tam giác abc chứ ko phải thay canh BE với CE nha