K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB và ΔEDC có

DA=DE

\(\widehat{ADB}=\widehat{EDC}\)

DB=DC
Do đo: ΔADB=ΔEDC

b: Ta có: ΔADB=ΔEDC

nên AB=EC

mà AB<AC

nên EC<AC

=>\(\widehat{AEC}>\widehat{EAC}\)

c: Xét ΔEAC có

CD là đường trung tuyến

CG=2/3CD

Do đó: G là trọng tâm của ΔEAC

=>H,G,E thẳng hàng

4 tháng 4 2016

mk chỉ làm đc a,b,d thui

4 tháng 4 2016

a)

xét tam giác ABD và tam giác EDC có

DA=DE(gt)

DB=DC(gt)

ADB=ADC(2 góc đđ)

suy ra ABD=EDC(c.g.c)

suy ra AB=EC

b)

theo câu a, ta có: AB=EC mà AB<AC suy ra EC<AC suy ra EAC<AEC

d)

ta có: DC=1/BC

DG=1/2CG suy ra DG=1/3DC

từ 2 điều trên suy ra: 

BC=2xDC=2x3xDG=6xDG

2 tháng 1 2022

a) Xét tam giác AHB và tam giác AHE có

  BH=HE

  AH chung

  góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)

  => tam giác AHB= tam giác AHE (c.g.c)

  =>HE=HB

b) Xét tam giác AHB và tam giác DHE có

   góc DHE = góc AHB ( đối  đỉnh)

   HE=HB (cmt)

   AH=HD

 => tam giác AHB=tam giác DHE (c.g.c)

 => DE= AB ( 2 cạnh tương ứng)

=> tam giác DHE= tam giác AHE =tam giác AHB

=> AE=DE(2 cạnh tương ứng)

c) Xét tam giác AHC và tam giác DHC có

  HC chung

  góc AHE=góc DHE=90 độ

  AH=HD

 => tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)

=>AC=DC (2 cạnh tương ứng)

Xét tam giác ACE và tam giác DCE có

  AE= DE (cmt)

  AC= DC(cmt)

  CE chung

 => tam giác ACE= tam giác DCE(c.c.c)

 => góc EAC= góc EDC (2 góc tương ứng)

  

2 tháng 1 2022

d)Ta có: C,E,B thẳng hàng

=> góc CEA+ góc AEB= 180 độ

Mà góc CEN và góc AEB là 2 góc đối đỉnh

=>góc AEC+ góc CEN= 180 độ

 => A,E,N thẳng hàng

BÀI 1:Cho tam giác ABC có góc =90°,trên cạnh BC lấy điểm E sao cho BE=BA .Tia phân giác của góc B cắt AC tại D .  a, So sánh độ dài DA và DE  b, Tính số đo góc BED c,Gọi I là trung điểm của AE vàe BDCMR:BD là đg trung trực của AEBài 2:Cho tam giá ABC có B=2C . Tia phân giác của góc  B cắt AC tại D.Trên tia đối tia BD lấy điểm E sao cho BE=AC.Trên tia đối tia CB lấy điểm K sao cho CK=AB a, CM:Tam giác EBA=tam...
Đọc tiếp

BÀI 1:

Cho tam giác ABC có góc =90°,trên cạnh BC lấy điểm E sao cho BE=BA .Tia phân giác của góc B cắt AC tại D . 

 a, So sánh độ dài DA và DE 

 b, Tính số đo góc BED

 c,Gọi I là trung điểm của AE vàe BD

CMR:BD là đg trung trực của AE

Bài 2:

Cho tam giá ABC có B=2C . Tia phân giác của góc  B cắt AC tại D.Trên tia đối tia BD lấy điểm E sao cho BE=AC.Trên tia đối tia CB lấy điểm K sao cho CK=AB

 a, CM:Tam giác EBA=tam giác ACK

 b, CM : EK=AK

BÀI 3:

Cho tam giác ABC . Gọi K , D lần lượt là trung điểm của cạnh AB,AC . Trên tia đối tia DA lấy điểm M sao cho DM=DA . Trên tia đối tia KM lấy điểm N sao cho KN=KM . CM:

      a, Tam giác ADC=tam giác ADB

      b, Tam giác AKN= tam giác BKM

      c, A là trung điểm của đoạn thẳng NC

Bài 4:

Cho tam giác ABC có góc B >góc C , đg cao AH

 a, CM : AH < 1/2 (AB+AC)

b, Hai đg trung tuyến BM,CN cắt nhau tại G . Trên tia đối tia MB  lấy điểm E sao cho ME=MG . Trên tia đối tia NC lấy điểm F sao cho NF=NG.CM:EF=BC

c, Đg thẳng AG cắt BC tại K . CM góc AKB > góc AKC

0
20 tháng 2 2020

a, AH = AD (gt)

=> tam giác AHD cân tại A (đn)

=> góc ADI = góc AHI (tc)

xét tam giác ADI và tam giác AHI có : AD = AH (gt)

DI = IH do I là trung điểm của DH (gt)

=> tam giác ADI = tam giác AHI (c-g-c)

b, tam giác AHC vuông tại H 

=> góc CAH + góc ACH = 90 (đl)

có ACH = 30 (gt)

=> góc CAH = 60

xét tam giác AHD cân tại A (câu a)

=> tam giác AHD đều (dh)

c, tam giác ADI = tam giác AHI (Câu a)

=>  góc DAK = góc HAK (đn)

xét tam giác DAK và tam giác HAK có : AK chung

AD = AH (gt)

=> tam giác DAK = tam giác HAK (c-g-c)

1 tháng 3 2018

a)xét tam giác ABM và tam giác DCM có:

BN=CM(GT)

góc BMA=góc CMD(đđ)

AM-DM(GT)

\(\Rightarrow\)tam giác ABM=tam giác DCM(c.g.c)

1 tháng 3 2018

b)theo câu a: tam giác ABM=tam giác DCM

\(\Rightarrow\)góc BAM= góc MDC(2 góc tương ứng)

mà đây là cặp góc so le trong

\(\Rightarrow\)AB//CD

\(\Rightarrow\)góc BAC= góc ACD=90 độ\(\Rightarrow\)CD \(\perp\)AC

c) xét tam giác AHC và tam giác EHC có:

AH=EH(GT)

góc AHC=góc EHC=90 độ

HC chung

\(\Rightarrow\)tam giác AHC = tam giác EHC(c.g.c)

\(\Rightarrow\)CA=CE(2 cạnh tương ứng)

\(\Rightarrow\)tam giác CAE cân tại C