K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2015

A) tam giác AMB và tam giác AMN có: AN=AB; A1=A2. ÂM chứng => tam giác AMB=tam giác AMN(c.g.c)=> MB=MN ( 2 cạnh tương ứng)

b) tam giác AMB=tam giác AMN (cmt)=> góc ABM=góc ANM.

góc ABM+góc MBK=180 độ; góc ANM+góc MNC=180

=> góc MBK=góc MNC

tam giác MBK và tam giác MNC: góc MBK=góc MNC(cmt); MB=MN(cmt); góc BMK=góc NMC(đối đỉnh)=> 2 tam giác = nhau (g.c.g)

c)tam giác MBK = tam giác MNC=> BK=NC

AK=AB+Bk; AC=AN+NC. mà AB=AN; BK=NC

=> AK=AC => tam giác AKC cân tại A. AM là phân giác => đồng thời là đường cao => AM vuông góc KC.

tam giác ABN cân tại A(AB=AN) => AM là phân giác đồng thời là đường cao => AM vuông góc  BN

=> KC//BN( cùng vuông góc với AM)

d) AB=AN=> AC-AB=AC-AN=NC(1)

tam giác MBK = tam giác MNC=> MB=MN

=> MC-MB=MC-MN

áp dụng bất đẳng thức tam giác ta có: NC+MN>MC <=> NC>MC-MN

hay AC-AB>MC-MB

mình làm bài này vừa phải kẻ hình lại còn dài nữa, nhớ L I K E nha. haizz

 

10 tháng 6 2015

Xét \(\Delta\)ABM và \(\Delta\)AMN có :

 AM chung

Góc A1= góc A2 ( gt )

AB=AN ( gt)

=>\(\Delta\)ABM=\(\Delta\)AMN ( c.g.c)

=> BM=MN

b . Ta có : góc ABM + góc MBK = 1800( vì kề bù )

Tương tự : góc ANM + góc MNC = 1800

Mà : góc ABM = góc AMN ( vì \(\Delta\)ABM = \(\Delta\)AMN )

=> góc MBK = góc MNC

Xét \(\Delta\)MBK và\(\Delta\)MNC có :

góc MBK = góc MNC ( CMT)

BM=CM ( theo câu a )

Góc M1= góc M2 ( đối đỉnh )

=> \(\Delta\)MBK = \(\Delta\)MNC ( g.c.g)

Bạn kí hiệu A1,A2,M1,M2 giùm mình nhé !! A B C M N K

5 tháng 1 2022

hình tự vẽ

a)Vì AD là tpg của ^BAC

=>^BAD = ^CAD = ^BAC/2

Xét tam giác ABD và tam giác AED có:

AD:cạnh chung

^BAD=^CAD(cmt)

AB=AE(gt)

=>tam giác ABD=tam giác AED (c.g.c)

=>BD=BE (cặp cạnh t.ư)

b)Vì tam giác ABD=tam giác AED(cmt)

=>^ABD=^AED (cặp góc t.ư)

Ta có:^ABD+^KBD=1800 (kề bù)

=>^KBD=1800-^ABD (1)

^AED+^CED=1800 (kề bù)

=>^CED=1800-^AED(2)

Từ (1);(2);có ^ABD=^AED(cmt)

=>^KBD=^CED

Xét tam giác DBK và tam giác DEC có:

BD=BE(cmt

^KBD=^CED(cmt)

^BDK=^EDC (2 góc đđ)

=>tam giác DBK=tam giác DEC (g.c.g)

a: Xét ΔABD và ΔAED có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

Suy ra: BD=ED

b: Xét ΔDBK và ΔDEC có 

\(\widehat{DBK}=\widehat{DEC}\)

BD=ED

\(\widehat{BDK}=\widehat{EDC}\)

Do đó: ΔDBK=ΔDEC

c: Ta có: ΔDBK=ΔDEC

nên BK=EC

Ta có: AB+BK=AK

AE+EC=AC

mà AB=AE

và BK=EC

nên AK=AC

hay ΔAKC cân tại A

12 tháng 8 2021

a, có AB=AN

AM phân giác \(=>\angle\left(BAM\right)=\angle\left(NAM\right)\)

AM chung=>tam giác ABM=tam giác ANM(c.g.c)

=>BM=MN

b,có BM=MN

vì tam giác ABM=tam giác ANM

\(=>\angle\left(ABM\right)=\angle\left(ANM\right)=>\angle\left(MBK\right)=\angle\left(MNC\right)\)

có \(\angle\left(BMK\right)=\angle\left(NMC\right)\left(doi-dinh\right)\)

=>tam giác MBK=tam giác MNC(g.c.g)

c,AM làm sao bạn? chắc là trung trực à

có tam giác MBK=tam giác MNC=>BK=NC

mà AB=AN=>AK=AC=>tam giác AKC cân tại A có AM phân giác nên đồng thời trung trực

có BM=MN

KM=MC

\(=>\dfrac{BM}{MC}=\dfrac{MN}{MK}\)=>BN//KC

d, \(MC-MB< BC-BC=0\)

\(AC>AB=>AC-AB>0\)

\(=>AC-AB>MC-MB\)

18 tháng 8 2021

Câu c là cm AM vuông góc KC mà

21 tháng 6 2021

undefined

21 tháng 6 2021

undefined

a: Xét ΔABE và ΔADE có 

AB=AD

\(\widehat{BAE}=\widehat{DAE}\)

AE chung

Do đó: ΔABE=ΔADE

Suy ra: BE=DE

b: Ta có: BE=DE

nên E nằm trên đường trung trực của BD(1)

Ta có: AB=AD

nên A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AE là đường trung trực của BD

hay AE\(\perp\)BD

c: Xét ΔBEK và ΔDEC có 

\(\widehat{KBE}=\widehat{CDE}\)

BE=DE

\(\widehat{BEK}=\widehat{DEC}\)

Do đó: ΔBEK=ΔDEC

d: Xét ΔAKC có 

AB/BK=AD/DC

nên BD//KC