Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
A)Xét tam giác AMB và tam giác ABC có
BM=MC (gt)
AB=AC (gt)
AM là cạnh chung
Vậy tam giác AMB =tam giác MAC(c.c.c)
Vì tam giác AMB = tam giác AMC
Suy ra góc AMB=góc AMC
TA có góc AMB+góc AMC = 180 độ (2 góc kề bù)
Suy ra góc AMB= góc AMC=90 độ
Suy ra Am vuông góc với BC
xét tam giác AMB và tam giác AMC có:
MA chung
AB=AC (giả thiết)
MC=MB(M trung điểm BC)
Nên tam giác AMB=tam giác AMC(c.c.c)
b, Từ chứng minh a
=> góc MAB = góc MAC và AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ
=> góc AMB=góc AMC=180 độ :2=90 độ
Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát)
Và AM vuông góc BC ( chứng minh trên)
Và AM cắt đường vuông góc BC tại I
=> I là trọng tâm tam giác ABC
=> CI vuông góc CA
xét tam giác AMB và tam giác AMC có:
MA chung
AB=AC (giả thiết)
MC=MB(M trung điểm BC)
Nên tam giác AMB=tam giác AMC(c.c.c)
b, Từ chứng minh a
=> góc MAB = góc MAC và AM nằm giữa AB và AC
=> AM là tia phân giác của góc BAC
c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ
=> góc AMB=góc AMC=180 độ :2=90 độ
Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát)
Và AM vuông góc BC ( chứng minh trên)
Và AM cắt đường vuông góc BC tại I
=> I là trọng tâm tam giác ABC
=> CI vuông góc CA
a)Xét tg ABC cân tại A(vì AB=AC),ta có:
AM là đường trung tuyến (vì M là trung điểm của BC)
=>AM là đường cao của tg ABC
=>AM vuông góc với BC.
b)Gợi ý:
ta có tg ABM=tg ACM(c-c-c)(tự xét nhé)
=>gBAM=gCAM
Xét tg ABM và tg ACM,có: AI chung; AB=AC; gBAM=gCAM=>tg ABM = tg ACM(c-g-c)
=>g ABM =g ACM
mà g ABM =90*(vì BA vuông góc BI)
=>g ACM=90*
=>
CI vuông góc với CA
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Ta có: ΔABC cân tại A
mà AM là đường cao
nên AM là tia phân giác của góc BAC
hay góc BAM= góc CAM
c: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
hay ΔMHK cân tại M
d: Xét ΔAHK có AH=AK
nên ΔAHK cân tại A
e: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có; ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: Xét ΔABI vuông tại B và ΔACI vuông tại C có
AI chung
AB=AC
Do đó: ΔABI=ΔACI
=>IB=IC
d: Ta có: IB=IC
=>I nằm trên đường trung trực của BC(1)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là trung trực của BC(2)
Từ (1) và (2) suy ra A,M,I thẳng hàng
a, xét tam giác AMB và tam giác AMC có : AB = AC (gt)
^ABC = ^ACB do tam giác ABC cân tại A (gt)
BM = CM do M là trung điểm của BC (gt)
=> tam giác AMB = tam giác AMC (c-g-c)
=> ^AMB = ^AMC (đn)
mà ^AMB + ^AMC = 180 (kb)
=> AM _|_ BC
b, xét tam giác ABI và tam giác ACI có : AI chung
AB = AC (gt)
^BAI = ^CAI do ...
=> tam giác ABI = tam giác ACI (c-g-c)
=> ^ABI = ^ACI (đn)
mà ^ABI = 90
=> ^ACI =90
=> CI _|_ AC