Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc A chung
=>ΔAHB đồng dạng với ΔAKC
=>AH=AK
c: Xet ΔAKI vuông tại K và ΔAHI vuông tại H có
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>góc KAI=góc HAI
d: ΔABC cân tại A
mà AP là phân giác
nên P là trung điểm của BC
=>AP vuông góc BC
bạn tự vẽ hình nhé
a) Vì M là trung điểm BC nên AM là đường trung tuyến của tam giác ABC
Mà tam giác ABC cân nên AM là trung tuyến đồng thời đường cao => AM vuông góc BC
b) Tam giác ABC cân nên góc B = góc C
Xét tam giác BHM và tam giác CKM có:
góc BHM= góc CKM= 90 độ
góc B= góc C
BM=CM ( do M là trđiểm BC)
=> tam giác BHM = tam giác CKM (Cạnh huyền - góc nhọn)
=> BH=CK
c) tam giác BHM = tam giác CKM (cmt)=> góc BMH=góc CMK( hai góc tương ứng)
mà BP // MK( do cùng vuông góc với AC)=> góc IBM= góc KMC ( hai góc đồng vị)
=> góc IBM =góc IMB => tam giác IBM cân
B C A M H K GT KL ABC:AB<AC M là trung điểm của BC BH AM(H AM) CK AM(K AM
\(\text{Phần kết luận thì bạn tự viết nha do mình chưa biết câu hỏi}\)
\(\text{Nếu bài có hỏi là chứng minh }\Delta BHM=\Delta CKM\text{ thì mình sẽ chứng minh hộ luôn nha}\)
\(\text{Do M là trung điểm của BC}\left(gt\right)\Rightarrow BM=CM\)
\(\text{Do }BH\perp AM\Rightarrow\widehat{BHM}=90^o\left(1\right)\)
\(\text{Do }CK\perp AM\Rightarrow\widehat{CKM}=90^o\left(2\right)\)
\(\text{Từ (1) và (2)}\Rightarrow\widehat{BHM}=\widehat{CKM}=90^o\)
\(\text{Xét }\Delta BHM\text{ và }\Delta CKM\text{ có:}\)
\(\)\(\widehat{BHM}=\widehat{CKM}\left(cmt\right)\left(3\right)\)
\(BM=CM\left(cmt\right)\left(4\right)\)
\(\)\(\widehat{BMH}=\widehat{CMK}\left(\text{đối đỉnh}\right)\left(5\right)\)
\(\text{Từ (1),(2) và (3)}\Rightarrow\Delta BHM=\Delta CKM\left(g.c.g\right)\)