cho tam giác abc ab<ac đường phân giác ad d thuộc bc 1. a)kẻ bm vuông góc v...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1:

a: Sửa đề: Chứng minh ΔAMB~ΔANC

Xét ΔAMB vuông tại M và ΔANC vuông tại N có

\(\widehat{MAB}=\widehat{NAC}\)

Do đó: ΔAMB~ΔANC

b: ΔAMB~ΔANC

=>\(\dfrac{AM}{AN}=\dfrac{MB}{NC}\)

Xét ΔDMB vuông tại M và ΔDNC vuông tại N có

\(\widehat{MDB}=\widehat{NDC}\)(hai góc đối đỉnh)

Do đó: ΔDMB~ΔDNC

=>\(\dfrac{DM}{DN}=\dfrac{BM}{NC}\)

=>\(\dfrac{DM}{DN}=\dfrac{AM}{AN}\)

=>\(DM\cdot AN=AM\cdot DN\)

 

1:

a: Sửa đề: Chứng minh ΔAMB~ΔANC

Xét ΔAMB vuông tại M và ΔANC vuông tại N có

\(\widehat{MAB}=\widehat{NAC}\)

Do đó: ΔAMB~ΔANC

b: ΔAMB~ΔANC

=>\(\dfrac{AM}{AN}=\dfrac{MB}{NC}\)

Xét ΔDMB vuông tại M và ΔDNC vuông tại N có

\(\widehat{MDB}=\widehat{NDC}\)(hai góc đối đỉnh)

Do đó: ΔDMB~ΔDNC

=>\(\dfrac{DM}{DN}=\dfrac{BM}{NC}\)

=>\(\dfrac{DM}{DN}=\dfrac{AM}{AN}\)

=>\(DM\cdot AN=AM\cdot DN\)

 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)

Vậy: BC=10cm; AD=3cm; CD=5cm

b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)

\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)

Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)

Xét ΔCED và ΔCAB có 

\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)

\(\widehat{C}\) chung

Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)

 

29 tháng 7 2018

a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)

\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)

Xét \(\Delta BHD\)và \(\Delta CKD\) có: 

                         \(\widehat{BHD}=\widehat{CKD}=90^0\)

                          \(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)

Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)

b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:

                     \(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)

                       \(\widehat{AHB}=\widehat{AKC}=90^0\)

Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)

Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay  \(AB.AK=AC.AH\)

C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\) 

\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)

Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)

d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.

Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I

\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)

\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)

Suy ra: \(\widehat{F}=\widehat{IEC}\)

Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)

Nên \(\widehat{FBO}=\widehat{ICE}\)

Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)

Chúc bạn học tốt.

b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có

góc MAB=góc NAC

=>ΔAMB đồng dạng với ΔANC

=>AM/AN=AB/AC

=>AM*AC=AB*AN

c: DB/DC=AB/AC=5/8

Xét ΔDMB vuông tại M và ΔDNC vuông tại N có

góc MDB=góc NDC

=>ΔDMB đồng dạng với ΔDNC

=>DM/DN=DB/DC=5/8

=>1/DN=5/8

=>DN=1,6cm