Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH
a) Sửa đề: MN cắt AH tại I
Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)
Ta có: MN//BC(cmt)
mà I∈MN(gt)
và H∈BC(gt)
nên IN//HC
Xét ΔAHC có
N là trung điểm của AC(gt)
IN//HC(cmt)
Do đó: I là trung điểm của AH(Định lí 1 về đường trung bình của tam giác)
b)
Ta có: Q đối xứng với P qua N(gt)
nên N là trung điểm của QP
Xét ΔABC có
P là trung điểm của BC(gt)
N là trung điểm của AC(gt)
Do đó: PN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒PN//AB và \(PN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà Q∈PN và \(PN=\dfrac{PQ}{2}\)(N là trung điểm của PQ)
nên AB//PQ và AB=PQ
Xét tứ giác ABPQ có
AB//PQ(cmt)
AB=PQ(cmt)
Do đó: ABPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: MN//BC(cmt)
mà H∈BC(gt)
và P∈BC(P là trung điểm của BC)
nên MN//HP
Xét ΔABC có
M là trung điểm của AB(gt)
P là trung điểm của BC(gt)
Do đó: MP là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒MP//AC và \(MP=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Ta có: ΔAHC vuông tại H(AH⊥BC)
mà HN là đường trung tuyến ứng với cạnh huyền AC(N là trung điểm của AC)
nên \(HN=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có MN//HP(cmt)
nên MNPH là hình thang có hai đáy là MN và HP(Định nghĩa hình thang)
Hình thang MNPH(MN//HP) có MP=HN(cmt)
nên MNPH là hình thang cân(Dấu hiệu nhận biết hình thang cân)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
hay MN//BP và MN=BP
=>BMNP là hình bình hành
b: Xét tứ giác AKBH có
M là trung điểm của HK
M là trung điểm của AB
Do đó: AKBH là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AKBH là hình chữ nhật
c: Xét ΔABC có
M là trung điểm của AB
P là trung điểm của BC
Do đó: MP là đường trung bình
=>MP=AC/2(1)
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến
nên HN=AC/2(2)
Từ (1) và (2) suy ra MP=HN
Xét tứ giác MNPH có MN//PH
nên MNPH là hình thang
mà MP=NH
nên MNPH là hình thang cân
Bạn ơi
Trên đây k đăng hình đc
Bạn vào thống kê hỏi đáp của mk xem đc k nhá!