K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

mình thật sự rất cần mong các bạn giúp đỡ 

16 tháng 10 2016

mk chưa hc hình bình hành

nên xin lỗi nhìu nha

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

23 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

Xét ΔABH có

M là trung điểm của AB

MI//BH

Do đó: I là trung điểm của AH

a) Sửa đề: MN cắt AH tại I

Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: MN//BC(cmt)

mà I∈MN(gt)

và H∈BC(gt)

nên IN//HC

Xét ΔAHC có 

N là trung điểm của AC(gt)

IN//HC(cmt)

Do đó: I là trung điểm của AH(Định lí 1 về đường trung bình của tam giác)

b)

Ta có: Q đối xứng với P qua N(gt)

nên N là trung điểm của QP

Xét ΔABC có 

P là trung điểm của BC(gt)

N là trung điểm của AC(gt)

Do đó: PN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒PN//AB và \(PN=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà Q∈PN và \(PN=\dfrac{PQ}{2}\)(N là trung điểm của PQ)

nên AB//PQ và AB=PQ

Xét tứ giác ABPQ có 

AB//PQ(cmt)

AB=PQ(cmt)

Do đó: ABPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: MN//BC(cmt)

mà H∈BC(gt)

và P∈BC(P là trung điểm của BC)

nên MN//HP

Xét ΔABC có

M là trung điểm của AB(gt)

P là trung điểm của BC(gt)

Do đó: MP là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒MP//AC và \(MP=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Ta có: ΔAHC vuông tại H(AH⊥BC)

mà HN là đường trung tuyến ứng với cạnh huyền AC(N là trung điểm của AC)

nên \(HN=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có MN//HP(cmt)

nên MNPH là hình thang có hai đáy là MN và HP(Định nghĩa hình thang)

Hình thang MNPH(MN//HP) có MP=HN(cmt)

nên MNPH là hình thang cân(Dấu hiệu nhận biết hình thang cân)

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

hay MN//BP và MN=BP

=>BMNP là hình bình hành

b: Xét tứ giác AKBH có 

M là trung điểm của HK

M là trung điểm của AB

Do đó: AKBH là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AKBH là hình chữ nhật

c: Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của BC

Do đó: MP là đường trung bình

=>MP=AC/2(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2(2)

Từ (1) và (2) suy ra MP=HN

Xét tứ giác MNPH có MN//PH

nên MNPH là hình thang

mà MP=NH

nên MNPH là hình thang cân

3 tháng 12 2019

hình như đề bài sai

16 tháng 3 2020

Ôn tập : Tứ giác

Ôn tập : Tứ giác

Tham khảo H

16 tháng 3 2020

Bạn ơi

Trên đây k đăng hình đc

Bạn vào thống kê hỏi đáp của mk xem đc k nhá!