Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I D
a.Xét tgiac ADB và tgiac ACI có:
góc BAD = góc IAC(gt)
góc BDA= góc ICA(gt)
Vậy tgiac ADB đồng dạng với tgiac ACI(g.g)
=> góc ABD = góc AIC => góc ABD = góc DIC
b.xét tgiac ADB và tgiac CDI có:
góc ADB= góc CDI(đối đỉnh)
góc ABD= góc CID(cmt)
vậy tgiac ADB đồng dạng với tgiac CDI(g.g)
c.theo câu a tgiac ADB đồng dạng với tgiac ACI nên ta có:
\(\frac{AD}{AC}\)=\(\frac{AB}{AI}\)=> AB.AC=AD.AI(1)
theo câu b ta lại có tgiac ADB đồng dạng với tgiac CDI nên ta có:
\(\frac{BD}{DI}\)=\(\frac{AD}{CD}\)=> BD.CD=DI.AD(2)
TỪ (1) VÀ (2) ta có:
AB.AC-DB.DC=AD.AI-DI.AD=AD.(AI-DI)=AD.AD=\(AD^2\)(ĐPCM)
a) Xét tam giác BAD và tam giác MCD có:
góc BAD = MCD (gt)
góc ADB = CDM (2 góc đối đỉnh)
=> 2 tam giác trên đồng dạng => AB/CM = DB/DM => AB.DM = DB.CM
b) Tam giác BAD đồng dạng vói MCD (cmt) => góc ABD = CMD
Xét tam giác ABD và AMC có: góc BAD = MAC (gt)
góc ABD = ACM (cmt)
=> 2 tam giác trên đồng dạng
Còn ý d bạn dùng định lý Ceva nha.
A B c D M
a, xet \(\Delta BDA\) va \(\Delta KDC\)
\(\widehat{ABD}=\widehat{DKC}=90^o\)
\(\widehat{ADB}=\widehat{KDC}\left(dd\right)\Rightarrow\Delta BDA\infty\Delta KDC\)
\(\Rightarrow\dfrac{BD}{DA}=\dfrac{DK}{DC}\)
b, xet \(\Delta DBK\) va \(\Delta DAC\)
\(\Rightarrow\dfrac{BD}{DA}=\dfrac{DK}{DC}\) , \(\widehat{BDK}=\widehat{ADC}\left(dd\right)\)
\(\Rightarrow\Delta DBK\infty\Delta DAC\left(cgc\right)\)
c, \(\Delta ABD\infty\Delta AKI\) ( \(\widehat{A}chung\);\(\widehat{ABD}=\widehat{AKI}=90\) )
\(\Rightarrow\widehat{ADB}=\widehat{AIK}\) hay \(\widehat{ADB}=\widehat{BIC}\)
xet \(\Delta ABD\) va \(\Delta CBI\)
\(\widehat{ADB}=\widehat{BIC}\) ; \(\widehat{ABD}=\widehat{CBI}=90\)
\(\Rightarrow\Delta ABD\infty\Delta CBI\left(gg\right)\)
\(\Rightarrow\dfrac{AB}{BD}=\dfrac{BC}{BI}\)
\(\Rightarrow AB.BI=BC.BD\)
\(\Rightarrow AB.\left(AI-AB\right)=BC.\left(BC-DC\right)\)
\(\Rightarrow AB.AI-AB^2=BC^2-BC.DC\)
\(\Rightarrow AB.AI+BC.DC=AC^2\)
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
b: Xét ΔBAD có MN//AD
nên MN/AD=BM/BA(1)
Xét ΔBCA có MH//AC
nên MH/AC=BM/BA(2)
Từ (1) và (2) suy ra MN/AD=MH/AC
hay MN/MH=AD/AC