Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trên tia đối của tia AM lấy K sao cho AM=KM
Xét ∆AMC và ∆KMB ta có:
AM=KM (cách vẽ)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
CM=BM (M là trung điểm BC)
=> ∆AMC=∆KMB
=> \(\widehat{CAM}=\widehat{BKM,}\)BK = AC>AB
Khi đó trong ∆ABK có:
BK>AB => \(\widehat{BAK}>\widehat{BKA}\Rightarrow\widehat{BAM}>\widehat{CAM}\)
a) ABC có AB < AC(gt) => C < B ta có ADC là góc ngoài của ABD => ADC = B + A1 mà ADB = C + A2 ( góc ngoài của ADC) vì C < B do đó ADC > ADB => 2ADC > ADB + ADC = 1800 => ADC > 900
b)Trên tia AC lấy điểm E sao cho AB = AE
a,Xét tg BAM= tg MAC (cgc)
Ta có : AB<AC
=> Góc AMB< góc AMC
Mà góc BAM = góc AMC (slt)
và góc MAC = góc BMA (slt)
=> góc A= góc M
Mà góc AMB < góc AMC
<=> góc CAM = góc BAM (đpcm)
b, từ mk sẽ lm típ