Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) Xét ΔABM và ΔECM có
BM=CM(AM là trung tuyến)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
AM=EM(gt)
Do đó: ΔABM=ΔECM(c-g-c)
b) Ta có: ΔABM=ΔECM(cmt)
⇒AB=EC(hai cạnh tương ứng)(1)
Xét ΔBHA vuông tại H và ΔBHF vuông tại H có
HA=HF(gt)
BH chung
Do đó: ΔBHA=ΔBHF(hai cạnh góc vuông)
⇒AB=FB(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra BF=CE(đpcm)
c) Ta có: ΔABM=ΔECM(cmt)
⇒\(\widehat{ABM}=\widehat{ECM}\)(hai góc tương ứng)
hay \(\widehat{ABC}=\widehat{ECM}\)(3)
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là \(\widehat{ACB}\)
và góc đối diện với cạnh AC là \(\widehat{ABC}\)
nên \(\widehat{ACB}< \widehat{ABC}\)(định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{ACM}< \widehat{ABC}\)(4)
Từ (3) và (4) suy ra \(\widehat{ACM}< \widehat{ECM}\)(đpcm)
Mình có hình cho câu a) thôi nha.
a) Xét 2 \(\Delta\) \(BEA\) và \(BEM\) có:
\(BA=BM\left(gt\right)\)
\(\widehat{ABE}=\widehat{MBE}\) (vì \(BE\) là tia phân giác của \(\widehat{ABC}\))
Cạnh BE chung
=> \(\Delta BEA=\Delta BEM\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta BEA=\Delta BEM.\)
=> \(EA=EM\) (2 cạnh tương ứng).
=> E thuộc đường trung trực của \(AM\) (1).
Vì \(BA=BM\left(gt\right)\)
=> B thuộc đường trung trực của \(AM\) (2).
Từ (1) và (2) => \(BE\) là đường trung trực của \(AM.\)
Ta có: \(\widehat{ABE}=\widehat{MBE}\) (vì \(BE\) là tia phân giác của \(\widehat{ABC}\))
=> \(\widehat{ABN}=\widehat{MBN}.\)
Xét 2 \(\Delta\) \(ABN\) và \(MBN\) có:
\(AB=MB\left(gt\right)\)
\(\widehat{ABN}=\widehat{MBN}\left(cmt\right)\)
Cạnh BN chung
=> \(\Delta ABN=\Delta MBN\left(c-g-c\right)\)
=> \(AN=MN\) (2 cạnh tương ứng).
=> N là trung điểm của \(AM.\)
Chúc bạn học tốt!
Đỗ Hương GiangNguyễn Lê Hoàng ViệtNguyễn Huy ThắngNguyễn Huy Tú
Trần Việt LinhVõ Đông Anh TuấnPhương An
1
a) trước tiên chứng minh\(\widehat{ABM}=\widehat{ACN}\)
rồi mới chứng minh 2 tam giác ABM và ACN bằng nhau
suy ra AM = AN
b)Đầu tiên chứng minh\(\widehat{ABH}=\widehat{ACK}\)
rồi chứng minh hai tam giác ABH và ACK bằng nhau
suy ra BH = CK
c) vì hai tam giác ABH và ACK bằng nhau (cmt)
nên AH = AK
d) ta có \(\widehat{AMB}=\widehat{ACN}\)(hai tam giác ABH và ACK bằng nhau)
nên dễ cm \(\widehat{MBH}=\widehat{NCK}\)
còn lại tự cm
e) dễ cm tam giác ABC đều
vẽ \(BH\perp AC\)
nên BH vừa là đường cao; phân giác và trung tuyến
dễ cm \(\Delta BHC=\Delta NKC\)
nên \(\widehat{BCH}=\widehat{NCK}=60^0\)
từ đó dễ cm AMN cân và OBC dều
a, Xét ∆ABM và ∆ECM, ta có:
- AM = ME (gt)
- \(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)
- MB = MC (M là trung điểm BC)
=> ∆ABM = ∆ECM (c-g-c)
b, Xét ∆AMC và ∆BME, ta có:
- AM = ME (gt)
- \(\widehat{AMC}=\widehat{BME}\) (đối đỉnh)
- MB = MC (M là trung điểm BC)
=> ∆AMC = ∆BME (c-g-c)
=> AC = BE
c, Xét ∆AHB và ∆DHB, ta có:
- AH = HD (gt)
- \(\widehat{AHB}=\widehat{DHB}=90^o\)
- BH là cạnh chung (gt)
=> ∆AHB = ∆DHB (c-g-c)
=> \(\widehat{ABH}=\widehat{DBH}\)
=> BM là phân giác góc ABM
d,