Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C J K H I
a/ Xét tg BIC có
\(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-\dfrac{\widehat{B}}{2}-\dfrac{\widehat{C}}{2}=\)
\(=180^o-\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=180^o-\left[\dfrac{180^o-\widehat{A}}{2}\right]=90^o+\dfrac{\widehat{A}}{2}\left(dpcm\right)\)
b/ Để c/m câu này ta chứng minh bài toán phụ: " Hai đường phân giác ngoài của 2 góc với đường phân giác trong của góc còn lại đồng quy"
A B C J D E F
Có hai đường phân giác của các góc ngoài của góc B và góc C cắt nhau tại J.
Từ J dựng các đường vuông góc với AB; AC; BC cắt 3 cạnh trên lần lượt tại D; E; F
Vì J thuộc đường phân giác của \(\widehat{DBC}\) nên JD=JF
Vì J thuộc đường phân giác của \(\widehat{ECB}\) nên JE=JF
(Mọi điểm thuộc đường phân giác của một góc thì cách đều hai cạnh của góc)
=> JD=JE
Xét tg vuông ADJ và tg vuông AEJ có
ẠJ chung; JD=JE (cmt) => tg ADJ = tg AEJ (hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{DAJ}=\widehat{EAJ}\) => Ạ là phân giác của góc \(\widehat{BAC}\)
Áp dụng vào bài toán:
Nối AJ => AJ là phân giác của \(\widehat{BAC}\) => AJ phải đi qua I (Trong tg 3 đường phân giác trong đồng quy) => A; I; J thẳng hàng
c/ Vì J; H; K bình đẳng nên B; I; K thẳng hàng và C; I; H thẳng hàng
=> AJ; BK; CH đồng quy tại I
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo bài 3 tại link trên nhé!
http://pitago.vn/question/cho-tam-giac-abc-tia-phan-giac-cua-goc-b-cat-tia-phan-giac-49658.html
a) Xét ∆ABC ta có :
ABC + ACB + BAC = 180°
=> ABC + ACB = \(180°\:-\:a\)
=> ABC + ACB = 110°
Vì BI là phân giác ABC
=> ABI = CBI
Vì CI là phân giác ACB
=> ACI = BCI
=> IBC + ICB = B+C/2
=> IBC + ICB = \(\frac{110°}{2}\)= 55°
Xét ∆BIC ta có :
BIC + IBC + ICB = 180°
=> IBC = 180° - 55°
=> IBC = 125°
Ta có :
Góc ngoài tại B = 180° - ABC
Góc ngoài tại C = 180° - ACB
Mà ABC + ACB = 110°
=> Góc ngoài B + góc ngoài C = 70°
Vì BK là phân giác góc ngoài B
CK là phân giác góc ngoài C
=> CBK + BCK = \(\frac{70°}{2}=35°\)
Xét ∆KCB ta có :
BKC + CBK + BCK = 180°
=> BKC = 180° - 35° = 145°