K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2016

bạn tự vẽ hình nhé:

xét tam giác AOB có: AB<AO+OB

                         Do A thuộc tia đối của tia 0C

                       =>A,O,C thẳng hàng .gọi đây là 1

                     tg OBC cân tại O.=>OB=OC  gọi đây là 2

 từ 1 và 2 =>AO+OB=AO+OC=AC

hay AB<AC(dpcm)

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

Bài làm

a) Ta có: \(\widehat{OAB}+\widehat{OAP}=180^0\)( hai góc kề bù )

\(\widehat{OBA}+\widehat{MBD}=180^0\)( hai góc kề bù )

Mà \(\widehat{OAB}=\widehat{OBA}\)( Do tam giác OAB cân ở O )

=> \(\widehat{OAP}=\widehat{MBD}\)

Xét tam giác APC và tam giác BMD có:

AC = BD ( gt )

\(\widehat{OAP}=\widehat{MBD}\)( cmt )

PA = MB ( gt )

=> Tam giác APC = tam giác BMD ( c.g.c )

b) Vì tam giác APC = tam giác BMD ( cmt )

=> \(\widehat{DMB}=\widehat{CPA}\)

Mà \(\widehat{BMD}=\widehat{CMA}\)( Hai góc đối )

=> \(\widehat{CMA}=\widehat{CPA}\)

=> Tam giác CMP cân ở C

c) Vì tam giác CMP cân ở C

=> CP = CM ( hai cạnh bên )

Mà CP = MD ( do tam giác APC = tam giác BMD )

=> CM = MD

=> M là trung điểm CD ( đpcm )

19 tháng 3 2018

Câu a) Dễ rồi nên mik ko làm nha

Câu b)

Vì O thuộc AH nên

\(OH< AH\)

Suy ra: \(\orbr{\begin{cases}AC>OC\\AB>OB\end{cases}}\)

Suy ra: \(OB+OC\le AB+AC\)( dấu ''='' xảy ra khi và chỉ khi: \(O\equiv A\))

c) Ta có: \(OB+OC>BC\)( bất đằng thức tam giác). Do đó:

Để \(OB+OC\)đạt giá trị lớn nhất thì: \(O\equiv H\)

Vậy .................