\(\perp\) B...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2017

Ta có hình vẽ: B A C K F E H 1 2 1 2 1 2 1 2 I

a) Xét 2 \(\Delta\)vuông \(ABE\)\(\Delta HBE\) có:

góc B1 = góc B2 (gt)

BE là cạnh huyền chung

=> \(\Delta ABE\) = \(\Delta HBE\) (cạnh huyền - góc nhọn)

b) Xét 2 \(\Delta\) \(ABI\)\(\Delta HBI\) có:

góc B1 = góc B2 (gt)

AB = HB (vì \(\Delta ABE\) = \(\Delta HBE\))

AI là cạnh chung

=> \(\Delta ABI\)= \(\Delta HBI\) (c-g-c)

=> AI = HI (2 cạnh tương ứng)

=> góc I1 = góc I2 (2 góc tương ứng)

mà góc I1 + góc I2 = 180 độ

=> góc I1 = góc I2 = 180/2= 90 độ

=> BI \(\perp\) AH

=> BI là đường trung trực của đoạn thẳng AH

=> BE cũng là đường trung trực của đoạn thẳng AH (đpcm) (vì B, I , E nằm trên cùng 1 đoạn thẳng)

c)Xét \(\Delta\) vuông HEC có:

EC là cạnh đối diên với góc vuông (góc EHC)

=> EC là cạnh lớn nhất

=> EC > HE

mặt \(\ne\) HE = AE (vì\(\Delta ABE\) = \(\Delta HBE\))

=> EC > AE

d) Xét \(\Delta BKC\) có:

KH là đường cao thứ 1

CA là đường cao thứ 2

=> BF là đường cao thứ 3

=> BF \(\perp\) KC

=> BE \(\perp\) KC (đpcm) (vì B, E , F nằm trên cùng 1 đoạn thẳng)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

14 tháng 1 2018

Bạn tự vẽ hình nha 

a) CM: tam giác ABE = tam giác HBE

Xét tam giác ABE (Â=90o) và tam giác HBE (góc H= 90o), ta có:

  Góc ABE = Góc HBE ( BE là p/g góc B)

     BE là cạnh chung

Vậy: tam giác ABE = tam giác HBE ( cạnh huyền-góc nhọn)

c) CM: NM=NC

Xét tam giác AEM và tam giác HEC, ta có:

  góc AEM = góc HEC ( đối đỉnh)

     AE = HE (tam giác ABE = tam gác HBE)

   góc EAM = góc EHC = 90o

Vậy: tam giác AEM = tam giác HEC (g-c-g)

Ta có: AB+AM=BM

          BH+HC=BC

mà BA=BH(tam giác BAE= tam giác BEH)

      AM=HC(tam giác AEM= tam giác HEC)

nên BM=BC

Xét tam giác NBM và tam giác NBC, ta có:

NB là cạnh chung

góc NBM= góc NBC ( BE là p/g góc B)

BM=BC (cmt)

Vậy tam giác NBM= tam giác NBC ( c-g-c)

=> NM=NC ( 2 cạnh tương ứng)

Sorry vì mình khong làm được bài b

10 tháng 5 2019

Trả lời................

Tớ không biết đúng hay sai đâu nha Ý Phạm

a,Xét tam giác ABE (BAE^ vuông) và tam giác HBE (BHE^ vuông) có:

BE=BE (cạnh chung)

ABE^=HBE^

 ⟹ ABE^=HBE^(ch+gn)

b,Ta có:

BA=BH (tam giác ABE = tam giác HBE)

EA=EH (________________________)

 ⟹ BE là đường trung trực của AH

c,Xét tam giác EKA và tam giác ECH có

AE=EH (gt)

EAK^=EHK^(=90o)

AEK^=HEC^(đối đỉnh)

 ⟹Tam giác EKA=tam giacsEHK (g-c-g)

 ⟹EK=EH ( cạnh tương ứng)

d,Từ điểm E đến đường thẳng HC có:
EH là đường vuông góc

EC là đường xiên

 ⟹EH<EC( quan hệ đường vuông góc)

Mà EH=AE(tam giác ABE = tam giác HBE)

 ⟹AE<AC

10 tháng 5 2019

Xin lỗi mình nhầm ở ròng cuối nha là

EC>AE

5 tháng 1 2021

giúp mình với nhé mai mình thi cuối học kì I môn toán rồi. Chúc các bạn có một kì thi tốt đẹp.

5 tháng 1 2021

đề bài sai à

câu a tam giác vuông tại A mà góc B = 90o suy ra góc C = 0o à

19 tháng 7 2018

ồ cuk dễ nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !