K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2019

Xét tam giác ABC có các tia phân giác của  B ^ và  C ^ cắt nhau tại I nên I là giao điểm của ba đường phân giác trong tam giác ABC, suy ra AI là đường phân giác của góc  A ^ và I cách đều ba cạnh của tam giác ABC (tính chất 3 đường phân giác của tam giác). Vậy ta loại đáp án A,B và C

Vì I là giao điểm của ba đường phân giác trong tam giác ABC nên => DI = IE(tính chất 3 đường phân giác của tam giác)

Chọn đáp án D

30 tháng 1 2022

5. ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)     \(a.b=c.d\)

\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2-2ab}{\left(c+d\right)^2-2cd}\)

Mà a+b = c+ d; ab = cd

=> đfcm

 

Bài 4: 

a: Ta có: I nằm trên đường trung trực của AD

nên IA=ID

Ta có: I nằm trên đường trung trực của BC

nên IB=IC

b: Xét ΔIAB và ΔIDC có 

IA=ID

\(\widehat{AIB}=\widehat{DIC}\)

IB=IC

Do đó: ΔIAB=ΔIDC

19 tháng 4 2018

sorry , I don't no

Em lớp 6 , chịu thôi

KB ko chị

3 tháng 5 2017

ANH hay là AH vậy bạn

1 tháng 6 2021

ID=IE

 

1 tháng 3 2020

a, I thuộc đường trung trực của AD (Gt)

=> IA = ID (Đl)

I thuộc đường trung trực của BC (gt)

=> IB = IC (đl)

b, xét ta giác IAB và tam giác IDC có : CD = AB (gt)

IB = IC (câu a)

IA = ID (câu a)

=> tam giác IAB = tam giác IDC (c-c-c)

1 tháng 3 2020

A C B I D

a) I \(\in\) đường trung trực của BC

\(\Rightarrow IB=IC\)

\(\in\) đường trung trực của AD

\(\Rightarrow IA=ID\Rightarrow\Delta IAD\) cân \(\Rightarrow\widehat{IAC}=\widehat{IDC}\) ( 1 )

Xét \(\Delta IAB\) và \(\Delta IDC\) có :

\(AB=CD\)

\(IB=IC\)

\(IA=ID\)

\(\Rightarrow\Delta IAB=\Delta IDC\)

\(\Rightarrow\widehat{BAI}=\widehat{CDI}\) ( 2 )

Từ (1) và (2) \(\Rightarrow\widehat{BAI}=\widehat{IAC}\Rightarrow AI\) là phân giác của \(\widehat{BAC}\)

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0