Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\( x^3=a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}+a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}+3\sqrt[3]{a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}.\sqrt[3]{a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}.x\)
=> \(x^3=2a+3\sqrt[3]{\left(a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}\right)\left(a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}\right)}.x\)
\(x^3=2a+3\sqrt[3]{a^2-\left(\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}\right)^2}.x\)
\(x^3=2a+3\sqrt[3]{\left(\frac{1-2a}{3}\right)^3}.x\)=> \(x^3=2a+\left(1-2a\right).x\)
=> x3 = 2a + x - 2ax => x3 - x + 2ax - 2a = 0
=> x(x2 - 1) + 2a.(x -1) = 0
=> (x -1). (x2 + x + 2a) = 0
=> x - 1 = 0 hoặc x2 + x + 2a = 0
Mà x2 + x + 2a = x2 + 2.x . (1/2) + (1/4) + 2a -(1/4) = (x +1/2)2 + 2. (a - 1/8) > = 0 với mọi a > = 1/8
=> x2 + x + 2a = 0 Vô nghiệm
vậy x = 1 => x thuộc N
\(x=\sqrt[3]{a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}+\sqrt[3]{a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}\)
\(\Leftrightarrow x^3=\left(\sqrt[3]{a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}+\sqrt[3]{a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}\right)^3\)
\(\Leftrightarrow x^3=2a+3.\sqrt[3]{a^2-\frac{\left(a+1\right)^2}{9}.\frac{8a-1}{3}}.\left(\sqrt[3]{a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}+\sqrt[3]{a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}\right)\)
\(\Leftrightarrow x^3=2a+3.\sqrt[3]{\frac{-8a^3+12a^2+6a-1}{27}}.x\)
\(\Leftrightarrow x^3=2a+3.\sqrt[3]{-\left(\frac{2a-1}{3}\right)^3}.x\)
\(\Leftrightarrow x^3=2a-\left(2a-1\right)x\Leftrightarrow x^3+\left(2a-1\right)x-2a=0\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)+\left(2a-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+2a\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x^2+x+2a=0\end{array}\right.\) . Ta có : \(x^2+x+2a=\left(x^2+x+\frac{1}{4}\right)+2\left(a-\frac{1}{8}\right)=\left(x+\frac{1}{2}\right)^2+2\left(a-\frac{1}{8}\right)\ge2\left(a-\frac{1}{8}\right)\)
Vì \(a>\frac{1}{8}\Rightarrow x^2+x+2a>0\) => vô nghiệm.
Vậy x = 1 => x là số tự nhiên.
Dấu ở giữa là cộng chứ nhỉ??
Đặt \(y=\sqrt[3]{a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}};z=\sqrt[3]{a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}\)
\(\Rightarrow\hept{\begin{cases}y^3+z^3=2a\\yz=\sqrt[3]{a^2-\frac{\left(a+1\right)^2\left(8a-1\right)}{27}}\\y+z=x\end{cases}=\sqrt[3]{\frac{27a^2-\left(8a^3+15a^2+6a-1\right)}{27}}=\sqrt[3]{\frac{\left(1-2a\right)^3}{27}}=\frac{1-2a}{3}}\)
Thay vào ta được:
\(x^3=\left(y+z\right)^3=y^3+z^3+3yz\left(y+z\right)\)\(=2a+3\frac{1-2a}{3}x=2a+\left(1-2a\right)x\)
\(\Leftrightarrow x^3-\left(1-2a\right)x-2a=0\)
\(\Leftrightarrow x^3-x+2ax-2a=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2a+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+2a+x=0\end{cases}}\)
Đến đây thì có lẽ là sẽ cm được \(x^2+2a+x>0\), mình chưa tìm ra cách cm.
KL : \(x=1\inℤ\)
a) Ta có : \(x=\sqrt[3]{a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}+\sqrt[3]{a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}\)
\(\Rightarrow x^3=2a+3.\sqrt[3]{a^2-\left(\frac{a+1}{3}\right)^2\left(\frac{8a-1}{3}\right)}.x\)
\(=2a+3\sqrt[3]{a^2-\frac{\left(a^2+2a+1\right)\left(8a-1\right)}{27}}.x\)
\(=2a+3\sqrt[3]{\frac{27a^2-\left(8a^3+15a^2+6a-1\right)}{27}}.x\)
\(=2a+3\sqrt[3]{\frac{-8a^3+12a^2-6a+1}{27}}.x\)
\(=2a+3x.\sqrt[3]{\frac{\left(1-2a\right)^3}{3^3}}=2a+3x.\frac{1-2a}{3}=2a+x\left(1-2a\right)\)
\(\Rightarrow x^2-2a+x\left(2a-1\right)=0\)\(\Leftrightarrow x^3-2a+2ax-x=0\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2a\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+2a\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+x+2a=0\end{cases}}\)
Vì \(a>\frac{1}{8}\) nên \(x^2+x+2a>0\Rightarrow\)vô nghiệm.
Vậy x - 1 = 0 => x = 1 thoả mãn x là số nguyên dương.
b) \(\sqrt[3]{x+24}+\sqrt{12-x}=6\) (ĐKXĐ : \(x\le12\))
\(\Leftrightarrow\sqrt[3]{x+24}=6-\sqrt{12-x}\Leftrightarrow x+24=\left(6-\sqrt{12-x}\right)^3\)
\(\Leftrightarrow x+24=6^3-3.6^2.\sqrt{12-x}+3.6.\left(12-x\right)-\left(\sqrt{12-x}\right)^3\)
\(\Leftrightarrow x+24=216-108\sqrt{12-x}+216-18x-\sqrt{12-x}^3\)
\(\Leftrightarrow-19\left(12-x\right)+108\sqrt{12-x}+\sqrt{12-x}^3-180=0\)
Đặt \(y=\sqrt{12-x},y\ge0\) . Phương trình trên tương đương với :
\(-19y^2+108y+y^3-180=0\Leftrightarrow\left(y-10\right)\left(y-6\right)\left(y-3\right)=0\)
=> y = 10 (TM) hoặc y = 6 (TM) hoặc y = 3 (TM)
- Với y = 10 , ta có x = -88 (TM)
- Với y = 6 , ta có x = -24 (TM)
- Với y = 3 , ta có x = 3 (TM)
Vậy tập nghiệm của phương trình : \(S=\left\{-88;-24;3\right\}\)
Căn thức đằng sau là căn bậc 2 hay căn bậc 3 bạn?
Căn bậc 2 thì x nó vô tỉ chứ hữu tỉ làm sao được