Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh rằng tích ab chia hết cho 6, ta cần chứng minh rằng một trong hai số a hoặc b chia hết cho 2 và một trong hai số a hoặc b chia hết cho 3.
Giả sử a chia hết cho 2, khi đó a có thể là 2, 4, 6 hoặc 8. Ta sẽ xét từng trường hợp:
-
Nếu a = 2, thì n = 10a + b = 20 + b. Vì n > 3, nên b > 0. Khi đó, tích ab = 2b chia hết cho 2.
-
Nếu a = 4, thì n = 10a + b = 40 + b. Vì n > 3, nên b > -37. Khi đó, tích ab = 4b chia hết cho 2.
-
Nếu a = 6, thì n = 10a + b = 60 + b. Vì n > 3, nên b > -57. Khi đó, tích ab = 6b chia hết cho 2.
-
Nếu a = 8, thì n = 10a + b = 80 + b. Vì n > 3, nên b > -77. Khi đó, tích ab = 8b chia hết cho 2.
Ta đã chứng minh được rằng nếu a chia hết cho 2, thì tích ab chia hết cho 2.
Tiếp theo, ta chứng minh rằng một trong hai số a hoặc b chia hết cho 3. Ta có thể sử dụng phương pháp tương tự như trên để chứng minh điều này.
Vì tích ab chia hết cho cả 2 và 3, nên tích ab chia hết cho 6.
Vậy, ta đã chứng minh được rằng nếu n = 10a + b (a, b ∈ N, 0 < a < 10), thì tích ab chia hết cho 6.
Bài này giải bằng quy nạp
Mình ko có thời gian nên nói cách làm thôi
Cho số tự nhiên n>3. CMR nếu: \(2^n=10a+b\left(a.b\in N;0< b< 10\right).\)
Thì tích ab chia hết cho 6
do n > 3 => 2^n >= 2^4 chia hết cho 16 => 10a + b chia hết cho 16
Ta có 2^n có thể có những tân cùng là 2; 4; 6; 8
TH1 2^n có tận cùng là 2 => n = 4k+1
=> 10a + b có tận cùng là 2 => b = 2 ( do b < 10)
ta có 2^n = 10a + 2 => 2( 2^(4k) - 1) = 10a => 2^( 4k) - 1 = 5a
do 2^(4k) - 1 chia hết cho 3 => 5a chia hết cho 3 => a chia hết cho 3
=> a.b = a.2 chia hết cho 6 (1)
TH2 2^n có tận cùng là 4 => n = 4k +2
=> 2^n = 10a + b có tận cùng là 4 => b = 4( do b <10)
=> 2^(4k +2) = 10a + 4 => 4.2^(4k) - 4 = 10a
=> 4(2^4k - 1) = 10 a
ta có 2 ^4k -1chia hết cho 3 => 10a chia hết cho 3 => a chia hết cho 3
=> a.b chia hết cho 6 (2)
Th3 2^n có tận cùng là 8 => n = 4k +3
TH 3 2^n có tận cùng là 6 => n = 4k
bằng cách làm tương tự ta luôn có a.b chia hết cho 6
Ta có:\(2^n⋮2;10a⋮2\Rightarrow b⋮2\Rightarrow ab⋮2\)
Ta chỉ cần chứng minh \(ab⋮3\) nữa là OK
Đặt \(n=4k+r\left(0\le n\le3;k\in Z^+;r\in N\right)\)
Nếu \(r=0\Rightarrow2^n=2^{4k+0}=2^{4k}=16^k\) có tận cùng là 6 nên b=6 \(\Rightarrow ab⋮\left(đpcm\right)\)
Nếu \(r\ne0\) thì \(2^n-2^r=2^{4k+r}-2^r=2^r\left(16^k-1\right)⋮10\Rightarrow2^n\) có tận cùng là \(2^r\)
\(\Rightarrow b=2^r\Rightarrow10a=2^n-2^r=2^r\left(16^k-1\right)⋮3\Rightarrow ab⋮3\)
\(\RightarrowĐPCM\)
do n > 3 => 2^n >= 2^4 chia hết cho 16 => 10a + b chia hết cho 16
Ta có 2^n có thể có những tân cùng là 2; 4; 6; 8
TH1 2^n có tận cùng là 2 => n = 4k+1
=> 10a + b có tận cùng là 2 => b = 2 ( do b < 10)
ta có 2^n = 10a + 2 => 2( 2^(4k) - 1) = 10a => 2^( 4k) - 1 = 5a
do 2^(4k) - 1 chia hết cho 3 => 5a chia hết cho 3 => a chia hết cho 3
=> a.b = a.2 chia hết cho 6 (1)
TH2 2^n có tận cùng là 4 => n = 4k +2
=> 2^n = 10a + b có tận cùng là 4 => b = 4( do b <10)
=> 2^(4k +2) = 10a + 4 => 4.2^(4k) - 4 = 10a
=> 4(2^4k - 1) = 10 a
ta có 2 ^4k -1chia hết cho 3 => 10a chia hết cho 3 => a chia hết cho 3
=> a.b chia hết cho 6 (2)
Th3 2^n có tận cùng là 8 => n = 4k +3
TH 3 2^n có tận cùng là 6 => n = 4k
bằng cách làm tương tự ta luôn có a.b chia hết cho 6
\(\left(x+y\right)^3-x^3y^3=\left(x+y\right)^3-\left(xy\right)^3\)
=\(\left(x+y+xy\right)\left[\left(x+y\right)^2-xy\left(x+y\right)+x^2+y^2\right]\)