K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

mình nghĩ là 1681

26 tháng 8 2018

ket qua la 1681 vi ax1000 +bx100+c10+dx1 =(5c+1)^2

Viết dấu đi,chẳng hiểu cái gì!

25 tháng 1 2016

Vì n là số tự nhiên có 2 chữ số

=> 9 < n < 100

=> 18 < 2n < 200

=> 2n thuộc {36; 64; 100; 144; 196} (Vì 2n là số chính phương chẵn)

+ 2n = 36 => n = 18 => n + 4 = 22 (loại)

+ 2n = 64 => n = 32 => n + 4 = 36 (là scp chọn)

Các trường hợp khác xét tương tự

25 tháng 11 2017

Tổng 3 số bằng 74.Số thứ 2 tỉ lệ với 5,6 số thứ 2 và số thứ 3 tỉ lệ với 4,5.Tìm mỗi số

3 tháng 2 2017

Ta thấy tổng của 3 chữ số liên tiếp bắt đầu từ số chẵn thì luôn luôn có các chữ số tận cùng là 1;3;5;7;9 (số lẻ) mà tổng này lại chia hết cho 5 nên suy ra chữ số hàng đơn vị là 5.

Khi đã có chữ số hàng đơn vị thì ta có thể suy ra tiếp chữ số hàng trăm sẽ là chữ số 4 để tổng của 5 và 4 chia hết cho 9.

Ta thấy chữ số hàng chục là số chẵn nhưng tổng ở đây là 3 chữ số liên tiếp nên khi tổng trừ 3 thì phải chia hết cho 3 nhằm để tìm số bé. Như vậy ta dùng phương pháp loại trừ ta thực hiện phép tính sau:

(4a5 - 3 ) chia hết cho 3

Ta thấy được chữ số 0 và chữ và chữ số 6 có thể thay thế vào a. Ta có 2 dãy số tự nhiên liên tiếp là:

Dãy 1 : 134;135;136

Dãy 2 : 154;155;156

Nhưng để thoả mãn điều kiện của đề bài là phải có 1 số trong dãy chia hết cho 9 vì vậy ta sẽ có dãy số đúng là dãy 1 vì số 135 chia hết cho 9.

1 tháng 2 2017

bài nào vậyok

14 tháng 2 2016

moi hok lop 6 thoi

14 tháng 2 2016

Với n = 1, ta có 
1^3 + 9.1^2 + 2.1 = 12 chia hết cho 6 
Giả sử khẳng định đúng với n = k, tức là: 
k^3 + 9k^2 + 2k chia hết 6 
Đặt k^3 + 9k^2 + 2k = 6Q 
Ta sẽ CM khẳng định đúng với n = k + 1, ta có: 
(k + 1)^3 + 9(k + 1)^2 + 2(k + 1) 
= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 2k + 1 
= (k^3 + 9k^2 + 2k) + 3k^2 + 18k + 3k + 12 
= 6Q + (3k^2 + 21k) + 12 
= 6Q + 3k(k + 7) + 12 
= 6Q + 3k[(k + 1) + 6] + 12 
= 6Q + 3k(k + 1) + 6.3k + 12 
Vì k và k + 1 là 2 số nguyên liên tiếp nên: 
k(k + 1) chia hết cho 2 
=> 3k(k + 1) chia hết cho 3.2 = 6 
=> 6Q + 3k(k + 1) + 6.3k + 12 chia hết cho 6 
Vậy theo nguyên lý quy nạp ta chứng minh được 
n^3 + 9n^2 + 2n chia hết 3