Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right]^2\le\left(2^2+3^2+4^2\right)\left[\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\right]\)
\(\Rightarrow\left(2x-3y+4z-20\right)^2\le29\)
\(\Rightarrow\left|2x-3y+4z-20\right|\le\sqrt{29}\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=1\\\frac{x-1}{2}=\frac{y+2}{-3}=\frac{z-3}{4}\end{matrix}\right.\)
\(x^2+4y^2+z^2-2x+8y-6z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1=0\)
Mà ta có
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(2y+2\right)^2\ge0\\\left(z-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)
Vậy không tồn tại x, y, z thỏa mãn đẳng thức trên
a: \(\Leftrightarrow\left\{{}\begin{matrix}4x+10y=6\\15x-10y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{34}{19}\\y=\dfrac{25}{19}\end{matrix}\right.\)
b: x+3y=5 và 2x-5y=-1
=>2x+6y=10 và 2x-5y=-1
=>11y=11 và x+3y=5
=>y=1 và x=2
c: 3x-4y=18 và 2x+y=1
=>3x-4y=18 và 8x+4y=4
=>11x=22 và 2x+y=1
=>x=2 và y=1-2*2=-3
Theo AM - GM và Bunhiacopski ta có được
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)
Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)
\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)
Đặt \(t=\frac{z}{x+y}\ge1\)
Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)
\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)
Vậy ta có đpcm
Ta có:
\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)
Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\)
Giả thiết tương đương \(\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2=29\).
Áp dụng bđt Cauchy - Schwarz ta có:
\(\left(2x-3y+4z-20\right)^2=\left[2\left(x-1\right)-3\left(y+2\right)+4\left(z-3\right)\right]^2\le\left(2^2+3^2+4^2\right)\left[\left(x-1\right)^2+\left(y+2\right)^2+\left(z-3\right)^2\right]=29^2\Rightarrow\left|2x-3y+4z-20\right|\le29\)