Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
đặt \(A=x\sqrt{6-x}+\left(5-x\right)\sqrt{x+1}\)
\(A=\sqrt{x}\sqrt{x\left(6-x\right)}+\sqrt{5-x}\sqrt{\left(5-x\right)\left(x+1\right)}\)
Áp dụng BĐT bunyakovsky :
\(A^2\le\left(x+5-x\right)\left[x\left(6-x\right)+\left(5-x\right)\left(x+1\right)\right]\)
\(A^2\le5\left(-2x^2+10x+5\right)=5\left[-2\left(x-\frac{5}{2}\right)^2+\frac{35}{2}\right]\)
\(A^2\le\frac{5.35}{2}=\frac{175}{2}=87,5\Leftrightarrow A\le\sqrt{87,5}\)
dấu = xảy ra khi \(\left\{\begin{matrix}x=\frac{5}{2}\\\frac{1}{6-x}=\frac{1}{x+1}\end{matrix}\right.\)<=> x=2,5
vậy Amax=.....
Ta có :
\(A=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=\left|x-y\right|+\left|y-z\right|+\left|z-x\right|\)
không mất tính tổng quát, giả sử \(0\le z\le y\le x\le3\)
Khi đó : A = x - y + y - z + x - z = 2x - 2z
vì \(0\le z\le x\le3\)nên : \(2x\le6;-2z\le0\Rightarrow2x-2z\le6\)
\(\Rightarrow A\le6\)
Vậy GTNN của A là 6 khi x = 3 ; z = 0 và y thỏa mãn \(0\le y\le3\)và các hoán vị
\(x+y=\sqrt{x+6}+\sqrt{y+6}\ge0\Rightarrow x+y\ge0\)
\(x+y=\sqrt{x+6}+\sqrt{y+6}\le\sqrt{2\left(x+y+12\right)}\)
\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+12\right)\)
\(\Rightarrow\left(x+y+4\right)\left(x+y-6\right)\le0\)
\(\Rightarrow x+y\le6\) (do \(x+y+4>0\))
\(P_{max}=6\) khi \(x=y=3\)
\(x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Rightarrow\left(x+y\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\ge x+y+12\)
\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-12\ge0\)
\(\Rightarrow\left(x+y+3\right)\left(x+y-4\right)\ge0\)
\(\Rightarrow x+y-4\ge0\) (do \(x+y+3>0\))
\(\Rightarrow x+y\ge4\)
\(P_{min}=4\) khi \(\left(x;y\right)=\left(-6;10\right)\) và hoán vị
Ta có: x - \(\sqrt{x+6}\) = \(\sqrt{y+6}\) - y (x; y \(\ge\) -6)
\(\Leftrightarrow\) P = x + y = \(\sqrt{x+6}+\sqrt{y+6}\)
\(\Leftrightarrow\) P2 = x + y + 12 + 2\(\sqrt{\left(x+6\right)\left(y+6\right)}\)
Áp dụng BĐT Cô-si cho 2 số ko âm x + 6 và y + 6 ta có:
\(x+y+12\ge2\sqrt{\left(x+6\right)\left(y+6\right)}\)
\(\Leftrightarrow\) P2 \(\le\) x + y + 12 + x + y + 12 = 2x + 2y + 24 = 2P + 24
\(\Leftrightarrow\) P2 - 2P - 24 \(\le\) 0
\(\Leftrightarrow\) P2 - 36 + 12 - 2P \(\le\) 0
\(\Leftrightarrow\) (P - 6)(P + 6) + 2(6 - P) \(\le\) 0
\(\Leftrightarrow\) (P - 6)(P + 4) \(\le\) 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}P-6\ge0\\P+4\le0\end{matrix}\right.\\\left\{{}\begin{matrix}P-6\le0\\P+4\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}-4\ge P\ge6\left(KTM\right)\\6\ge P\ge-4\left(TM\right)\end{matrix}\right.\)
\(\Rightarrow\) -4 \(\le\) P \(\le\) 6
Vậy ...
Chúc bn học tốt!
\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)
Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)
Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Đặt \(x+\sqrt{1+x^2}=a\Rightarrow a-x=\sqrt{1+x^2}\Rightarrow a^2-2ax+x^2=1+x^2\)
=> \(a^2-1=2ax\Rightarrow x=\frac{1}{2}\left(a-\frac{1}{a}\right)\)
Tương tự, đặt \(y+\sqrt{1+y^2}=b\Rightarrow y=\frac{1}{2}\left(b-\frac{1}{b}\right)\)
=> x+y=\(\frac{1}{2}\left(a+b-\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{2}\left(a+b-\frac{3}{3a}+\frac{3}{3b}\right)=\frac{1}{2}\left(a+b-\frac{1}{3}a-\frac{1}{3}b\right)\)(vì ab=3)
=\(\frac{1}{2}.\frac{2}{3}\left(a+b\right)=\frac{1}{3}\left(a+b\right)\)
Mà \(\left(a+b\right)^2\ge2ab=6\Rightarrow a+b\ge\sqrt{6}\Rightarrow\frac{1}{3}\left(a+b\right)\ge\frac{\sqrt{6}}{3}\)
dấu = xảy ra <=> a=b<=> x=y bạn tự thay vào và tự tìm nhá
^_^
Theo đề bài, ta có:
x3+y3=x2−xy+y2x3+y3=x2−xy+y2
hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0
⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1
+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52
+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4
Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
\(P^2=\left(x\sqrt{8-x}+\left(5-x\right)\sqrt{x+3}\right)^2\)
\(=x^2\left(8-x\right)+\left(5-x\right)^2\left(x+3\right)+2x\left(5-x\right)\sqrt{8-x}\sqrt{x+3}\)
\(=x^2-5x+75+2x\left(5-x\right)\sqrt{8-x}\sqrt{x+3}\)
Có \(\sqrt{8-x}\sqrt{x+3}\le\frac{8-x+x+3}{2}=\frac{11}{2}\)
\(0\le x\le5\Rightarrow x\left(5-x\right)\ge0\)
Suy ra \(P^2\le x^2-5x+75+2x\left(5-x\right).\frac{11}{2}\)
\(=x^2-5x+75+11x\left(5-x\right)\)
\(=10x\left(5-x\right)+75\)
\(\le10.\left(\frac{x+5-x}{2}\right)^2+75=\frac{275}{2}\)
Suy ra \(P\le\sqrt{\frac{275}{2}}=\frac{5\sqrt{22}}{2}\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}8-x=x+3\\x=5-x\end{cases}}\Leftrightarrow x=\frac{5}{2}\).
Vậy \(maxP=\frac{5\sqrt{22}}{2}\).
\(P^2=x\left(x-5\right)+75+2x\left(5-x\right)\sqrt{8-x}\sqrt{x+3}\)
\(=x\left(5-x\right)\left(2\sqrt{8-x}\sqrt{x+3}-1\right)+75\)
Có \(0\le x\le5\)nên \(\sqrt{8-x}\ge\sqrt{8-5}>1,\sqrt{x+3}\ge\sqrt{0+3}>1\)
suy ra \(\sqrt{8-x}\sqrt{x+3}>1\Rightarrow2\sqrt{8-x}\sqrt{x+3}-1>0\)
\(0\le x\le5\) nên \(x\left(5-x\right)\ge0\)
Suy ra \(P^2=x\left(5-x\right)\left(2\sqrt{8-x}\sqrt{x+3}-1\right)+75\ge75\)
\(P\ge\sqrt{75}=5\sqrt{3}\).
Dấu \(=\)xảy ra khi \(\orbr{\begin{cases}x=0\\x=5\end{cases}}\).
Vậy \(minP=5\sqrt{3}\).