K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

\(P=\frac{x^2}{2-x^2}+\frac{1-x^2}{1+x^2}\)

\(\Leftrightarrow P=\frac{x^2-2+2}{2-x^2}+\frac{-1-x^2+2}{1+x^2}\)

\(\Leftrightarrow P=-1+\frac{2}{2-x^2}-1+\frac{2}{1+x^2}\)

\(\Leftrightarrow P=-1-1+2\left(\frac{1}{2-x^2}+\frac{1}{1+x^2}\right)\)

Ta sẽ c/m \(\frac{1}{2-x^2}+\frac{2}{1+x^2}\le\frac{3}{2}\)

\(\frac{1}{2-x^2}+\frac{1}{1+x^2}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{1+x^2+2-x^2}{\left(2-x^2\right)\left(1+x^2\right)}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{3}{\left(2-x^2\right)\left(1+x^2\right)}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{\left(2-x^2\right)\left(1+x^2\right)}\le\frac{1}{2}\)

\(\Leftrightarrow2\le2+2x^2-x^2-x^4\)

\(\Leftrightarrow0\le x^2-x^4\)

\(\Leftrightarrow0\le x^2\left(1-x^2\right)\)( luôn đúng với \(0\le x\le1\))

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}x^2=0\\1-x^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

=> \(P\le-1-1+2.\frac{3}{2}=-2+3=1\)

Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}x^2=0\\1-x^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy \(P_{max}=1\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

P/S: có gì sai sót xin bỏ qua

 
25 tháng 2 2019

Câu hỏi của cai j vay - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

5 tháng 12 2018

ĐK: x khác 0

Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)

Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022

29 tháng 1 2019

tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)

Có A = 2016 + xy > 2016 - 6 = 2010 !!!

Được rồi chứ gì -.- 

29 tháng 2 2020

1, \(=\left[\frac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}-x\right]:\frac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)

\(=\left(1+x+x^2-x\right):\frac{1-x^2}{\left(1-x\right)\left(1-x^2\right)}\)\(=\left(x^2+1\right)\left(1-x\right)\)

2, để B<0 <=> (x2+1)(1-x)<0

vì x^2+1 > 0 với mọi x

=> \(\hept{\begin{cases}x^2+1>0\\1-x< 0\end{cases}\Leftrightarrow x>1}\)

3, \(\left|x-4\right|=5\Leftrightarrow\orbr{\begin{cases}x=9\\x=-1\left(loại\right)\end{cases}}\)

Thay x=9 vào B ta có: B=(92+1)(1-9)=82.(-8)=-656

2 tháng 2 2020

\(a,Đkxđ:x\ne\pm2\)

\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x+1\right)^2}{x^2-4}\)

b, Ta có: \(\left(x-2\right)\left(x+2\right)< 0;\forall-2< 2< 2;x\ne-1\)

Mà: \(\left(x+1\right)^2>0\left(\forall x\ne-1\right)\)

\(\Rightarrow\frac{\left(x+1\right)^2}{\left(x+2\right)\left(x-2\right)}< 0;\forall-2< x< 2;x\ne-1\)

Vậy ............

6 tháng 1 2021

\(3=\left(x^2+\frac{1}{x^2}\right)+\left(x^2+\frac{y^2}{4}\right)\ge2+\left|xy\right|\Rightarrow\left|xy\right|\le1\Rightarrow-1\le xy\le1\Rightarrow Bantulmtiep\)

6 tháng 1 2021

dùng bđt cô si vào phần giả thiết đã cho nhé bạn , mình đang bận không tiện làm . Nếu cần thì tối rảnh mình làm cho

Giờ bạn cần bài này nữa không 

1.   Đặt A = x2+y2+z2

             B = xy+yz+xz

             C = 1/x + 1/y + 1/z

Lại có (x+y+z)2=9

             A + 2B = 9

  Dễ chứng minh A>=B 

      Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)

Vì x+y+z=3 => (x+y+z) /3 =1 

    C = (x+y+z) /3x  +  (x+y+x) /3y + (x+y+z)/3z

C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x) 

Áp dụng bất đẳng thức (a/b+b/a) >=2

=> C >=3 ( khi và chỉ khi x=y=z=1)

P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1

Vậy ...........

Câu 2 chưa ra thông cảm