\(\le\)4. Tìm Max của \(P=x\sqrt{4-x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

26 tháng 5 2017

Ta có :\(M=\dfrac{x}{2}+\sqrt{1-x-2x^2}=\dfrac{x}{2}+\sqrt{\left(x+1\right)\left(1-2x\right)}\le\dfrac{x}{2}+\dfrac{\left(x+1\right)+\left(1-2x\right)}{2}=1\)Dấu "=" xảy ra khi :x+1=1-2x\(\Leftrightarrow x=0\)

Vậy giá trị lớn nhất của M là 1 khi x=0

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

NV
23 tháng 10 2019

1/ \(a+1=\sqrt[4]{\frac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)^2}}-\sqrt[4]{\frac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)^2}}=\sqrt{\frac{\sqrt{3}+1}{\sqrt{3}-1}}-\sqrt{\frac{\sqrt{3}-1}{\sqrt{3}+1}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}}=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

2/ \(a+b=5\Leftrightarrow\left(a+b\right)^3=125\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=125\)

\(\Rightarrow a^3+b^3=125-3ab\left(a+b\right)=125-3.1.5=110\)

3/ \(mn\left(mn+1\right)^2-\left(m+n\right)^2.mn\)

\(=mn\left(\left(mn+1\right)^2-\left(m+n\right)^2\right)\)

\(=mn\left(mn+1-m-n\right)\left(mn+1+m+n\right)\)

\(=mn\left(m-1\right)\left(n-1\right)\left(m+1\right)\left(n+1\right)\)

\(=\left(m-1\right)m\left(m+1\right)\left(n-1\right)n\left(n+1\right)\)

Do \(\left(m-1\right)m\left(m+1\right)\)\(\left(n-1\right)n\left(n+1\right)\) đều là tích của 3 số nguyên liên tiếp nên chúng đều chia hết cho 3 \(\Rightarrow\) tích của chúng chia hết cho 36

NV
23 tháng 10 2019

4/

Do \(0\le x\le1\Rightarrow\left\{{}\begin{matrix}x\ge0\\x-1\le0\end{matrix}\right.\) \(\Rightarrow x\left(x-1\right)\le0\)

\(\Leftrightarrow x^2-x\le0\Leftrightarrow x^2\le x\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

5/ Đặt \(\left\{{}\begin{matrix}\sqrt{5a+4}=x\\\sqrt{5b+4}=y\\\sqrt{5c+4}=z\end{matrix}\right.\)

Do \(a+b+c=1\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow2\le x;y;z\le3\)\(x^2+y^2+z^2=5\left(a+b+c\right)+12=17\)

Khi đó ta có:

Do \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)

\(\Leftrightarrow x^2-5x+6\le0\Leftrightarrow x\ge\frac{x^2+6}{5}\)

Tương tự: \(y\ge\frac{y^2+6}{5}\) ; \(z\ge\frac{z^2+6}{5}\)

Cộng vế với vế:

\(A=x+y+z\ge\frac{x^2+y^2+z^2+18}{5}=\frac{17+18}{5}=7\)

\(\Rightarrow A_{min}=7\) khi \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

E2 = 8+căn(2-x)(x+6)

+) vì căn (2-x)(x+6) >= 

=> E2 >= 8

với đk -6<=x<=2 thì E luôn dương( câu này viết gọn thành E>= 0)

=> E>= căn 8=2 căn 2

=> Min E = 2 căn 2 khi x=-6 hoặc x=2

+)E2 = 8+căn( -x2 -4x+12)

E2=8 +căn(-x2-4x-4 + 16) = 8+căn(-(x+2)2 + 16) <= 8 + căn 16 = 8+4 = 12 ( vì -(x+2)2 <= 0 V x)

=>E<= căn12 = 2 căn 3

=> Max E = 2 căn 3 khi x=-2

học tốt

a sorry

phần max nha

E2 <= 8 + 2 căn 16 = 8+8=16

E>0 =>0< E<=4

=> MaxE = 4 khi x=-2

xin lỗi nhiều

học tốt

NV
4 tháng 10 2019

\(M=\frac{x}{2}+\sqrt{\left(x+1\right)\left(1-2x\right)}\le\frac{x}{2}+\frac{x+1+1-2x}{2}=1\)

\(\Rightarrow M_{max}=1\) khi \(x+1=1-2x\Rightarrow x=0\)