K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 6 2019

Đặt \(z=x+yi\Rightarrow\) quỹ tích z là các điểm M thuộc đường tròn \(\left(x-2\right)^2+\left(y+3\right)^2=5\) có tâm \(I\left(2;-3\right)\) bán kính \(R=\sqrt{5}\)

\(P=x^2+\left(y+1\right)^2-\left(x-2\right)^2-y^2=4x+2y-3\)

\(P=4\left(x-2\right)+2\left(y+3\right)-1\le\sqrt{\left(4^2+2^2\right)\left[\left(x-2\right)^2+\left(y+3\right)^2\right]}-1=11\)

\(\Rightarrow P_{max}=11\) khi \(\frac{x-2}{4}=\frac{y+3}{2}\Rightarrow x=2y+8\)

Thay vào \(\left(x-2\right)^2+\left(y+3\right)^2=5\) tìm được \(x;y\Rightarrow\) tìm được \(z\)

3 tháng 12 2018

14 tháng 3 2018

Chọn A.

Gọi M( x; y)  là điểm biểu diễn của số phức z trên mặt phẳng Oxy.

Biểu diễn hình học của P là đường thẳng và P = 4x + 2y + 3.

Áp dụng bất đẳng thức Bunyakovsky ta có:

P = 4x + 2y + 3 = 4(x – 3) + 2(y – 4) + 23

Vậy MaxP = 33 

19 tháng 8 2019

Đáp án B.

26 tháng 11 2018

Đáp án D.

31 tháng 8 2019

Đáp án B.

Đặt  suy ra tập hợp các điểm M(z) = (x;y)  là đường tròn (C) có tâm I(3;4) và bán kính R =  5

Ta có 

Ta cần tìm P sao cho đường thẳng ∆  và đường tròn (C) có điểm chung 

Do đó 

NV
8 tháng 4 2022

Đặt \(z=x+yi\)

\(\left|x+yi+x-yi+2\right|+2\left|x+yi-x+yi-2i\right|\le12\)

\(\Leftrightarrow\left|2x+2\right|+4\left|\left(y-1\right)i\right|\le12\)

\(\Leftrightarrow\left|x+1\right|+2\left|y-1\right|\le6\)

Tập hợp z là miền trong hình thoi (gồm cả biên) với 4 đỉnh: \(A\left(-7;1\right)\) ; \(B\left(-1;4\right)\) ; \(C\left(5;1\right)\) ; \(D\left(-1;-2\right)\)

\(P^2=\left|z-4-4i\right|^2=\left(x-4\right)^2+\left(y-4\right)^2\)  có tập hợp là đường tròn (C) tâm \(I\left(4;4\right)\) bán kính \(R=P>0\) sao cho (C) và hình thoi ABCD có ít nhất 1 điểm chung

Từ hình vẽ ta thấy \(P_{max}\) khi (C) đi qua A \(\Rightarrow P=IA\) và \(P_{min}\) khi (C) tiếp xúc BC  \(\Rightarrow P=d\left(I;BC\right)\)

\(\overrightarrow{IA}=\left(-11;-3\right)\Rightarrow M=IA=\sqrt{130}\)

\(\overrightarrow{BC}=\left(6;-3\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtpt

Phương trình BC: \(1\left(x+1\right)+2\left(y-4\right)=0\Leftrightarrow x+2y-7=0\)

\(\Rightarrow m=d\left(I;BC\right)=\dfrac{\left|4+2.4-7\right|}{\sqrt{1^2+2^2}}=\sqrt{5}\)

\(\Rightarrow M+m=\sqrt{130}+\sqrt{5}\)

NV
8 tháng 4 2022

undefined

25 tháng 9 2018

Đáp án C

Phương pháp: Gọi  là số phức cần tìm. Sử dụng giả thiết để đưa ra một hệ điều kiện đẳng thức, bất đẳng thức cho a,b. Sử dụng điều kiện trên để đánh giá và tìm giá trị lớn nhất của P.

 Lời giải chi tiết.

Giả sử số phức thỏa mãn yêu cầu bài toán có dạng  Khi đó ta có 

Từ giả thiết ta suy ra

Do đó   

Đẳng thức xảy ra khi và chỉ khi

Chú ý. Đối với bài toán liên quan tới cực trị học sinh thường mắc phải sai lầm là quên tìm giá trị để cực trị xảy ra. Điều này có thể dẫn tới việc tìm sai giá trị lớn nhất nhỏ nhất

17 tháng 9 2018

Giả sử số phức thỏa mãn yêu cầu bài toán có dạng z = a+bi Khi đó ta có

Đáp án C