Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có
Lấy môđun hai vế của (*) và sử dụng công thức ta được
Gọi M(x;y) là điểm biểu diễn số phức z. Khi đó
Đáp án D
Ta có (3-4i)z - 4 z = 8
Lấy môđun hai vế của (*) và sử dụng công thức ta được
Gọi M(x;y) là điểm biểu diễn số phức z. Khi đó OM =
Chọn D.
Gọi
Ta có
Vậy tập hợp điểm biểu diễn các số phức z là đường tròn tâm I(1;-2) và bán kính R=5
Đáp án D.
Gọi
Vậy tập hợp điểm biểu diễn các số phức là đường tròn tâm I(1;-2) và bán kính R=5
Bình luận: Bài toán này ta dễ dàng nhận ra bằng phương pháp loại trừ nhất định 2 đáp án B và C đúng.
Mặt khác
Vậy biểu diễn hình học của z không thể là hình tròn:
Biểu diễn hình học của số phức.
Số phức z=a+bi được biểu diễn bởi điểm M(a;b) trong mặt phẳng Oxy.
Chọn D.
Gọi M(x; y) là điểm biểu diễn số phức z = x + yi, x, y ∈ R
Gọi A là điểm biểu diễn số phức 2
Gọi B là điểm biểu diễn số phức -2
Ta có: |z – 2| + |z + 2| = 10 ⇔ MB + MA = 10.
Ta có AB = 4.
Suy ra tập hợp điểm M biểu diễn số phức z là Elip với 2 tiêu điểm là A(2; 0), B( -2; 0) tiêu cự AB = 4 = 2c, độ dài trục lớn là 10 = 2a , độ dài trục bé là
Vậy tập hợp các điểm biểu diễn các số phức z thỏa mãn điều kiện |z – 2| + |z + 2| = 10 là elip có phương trình
Chọn C.